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Each factor in the product on the right is the square root of an expression
of the shape

(3) (S** —2SR,S** cos \y + S?R?)/S*? (S* —2SR, cosy +R}),

where z, = R, and = 6 — ¢,. One sees that the turning points of
(3) as a function of \ occur when sin ¥ = 0 and that the minimal value
of (3) is

(4) ((S*2 +SR,)/S* (S +Ry))*

One easily confirms that (4) is minimal for 0 << R, << R when R, = R,
whence we obtain
|Gls > | F| g +SR>n
ST BAS*(S+R)/

and the assertion of the lemma follows.
. . . S*(R—z2)\" .

The lemma is “ best possible ”; the function F (z) = <m> being
the extreme case. I am indebted to Michel Waldschmidt for mentioning
the result of the lemma to me. The lemma improves upon a similar result
obtainable via Jensen’s theorem, (see, for example, Tijdeman [26], p. 3).

According to the above observations, our principal attention below is
directed towards the finding of upper bounds for ratios of the shape (1).
Although the principles of our techniques are not new, many of the details
have been little more than folklore and are presented here explicitly for
the first time.

2. A USEFUL IDENTITY

The following lemma is presented in somewhat exaggerated generality.
Its implications will become clear when below we come to look at specific
examples.

LEMMA 2. Let S*,S be real numbers satisfying S* > S >0 and
let G be a function of the shape

G(z) = er=1 by g, (2),

by, ..., b, complex constants, where g, ...g, are functions holomorphic
in some open set containing the disc l Z = Fy | < S*. Further let z, ..., z,
be points in the disc l z =~ zg [ < S andlet ty, ... t, be non-negative integers.
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Finally denote by A;; the cofactor of the typical element in the ¢ X o
determinant ‘

4 = lggtj)(zj) lléi,jéa )

suppose that A # 0, and assume the notational conventions of the intro-
duction above. Then for w such that |w — z, | S* we have

A d
(5) G(w) =) 9.1 %= 1{27: ﬁ - STQk(W)< Z) (Y)( _Z)}z 5

and it follows that if G does not vanish identically

£,

- IZA""ZODMH

A
(6) 1Glse/ |G ls<)i_y max | Y-y j’k ge(w)| . S(S

Proof. By the residue theorem the right-hand side of (5) is

Zz IZk 1 L. gk(W) G2 (z,)

g g ag A
= Zk=1 Zh=1 by gi (w) Zz=1 Qh(t’l) (z7) "
A

= > %e1 Y 5=1bn 9k (W) Oy, (84, the Kronecker delta)
=G (W) >

as was asserted. Having thus established the identity (5), we conclude that
o o Alk t '
IGIS*<ZA=1 max le 1‘—“‘gk(w) T G(Y)Wl l
and estimating the integral on the circle [y — 2z, | = S, the assertion
(6) is immediate.
We have stated the lemma in such generality as might be appropriate

for the purposes of this note. The reader should observe that, moreover,
the same idea can be used to obtain any combination

D=1 by

on the left-hand side of an identity similar to (5); this is useful in isolating
the coefficients b, which is necessary when one is investigating the number
of points in a disc at which the given function G (z) may be small; see
theorem 2 below for details. We remark that the identity (5) should be
viewed as a (degenerate) case of the integral form of the Hermite inter-
polation formula.
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