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§ 2. A CRITERION FOR X" < P" TO BE STABLE

If f(a) is an integer-valued function which is represented by a rational
polynomial of degree at most r in n for large n, we will denote by n.l.c. (f)
(the normalized leading coefficient of f) the integer e for which f(n)

r

=e— + lower order terms. (What r is to be taken, will always be clear
r!

from the context.)

ProPOSITION 2.11Y). (The “Hilbert-Hilbert-Samuel” Polynomial). Sup-
pose X is a k-variety (not necessarily complete), L is an invertible sheaf
on X and F < Oy is an ideal sheaf such that Z = Supp 0x/F is proper
over k. Then there is a polynomial P (n, m) of total degree = r, such that,
for large m

¥ (L"|I"L")y = P(n, m).

Proof. We can compactify X and extend L to a line bundle on this
compactification, without altering the validity of the theorem so we may
as well assume X proper over k. Let n: B — X be the blow-up of X along
S (le. B=B,(X) =Proj(0xy ®F @S> @..)) and let E be the excep-
tional divisor on B so that .# . 05 = O (—E). The well-known theorems of
F.A.C. (Serre [18]) for the vanishing of higher cohomology in the relative
case imply that when m > 0:

i) n, (0(—mE)) = J"
ii) R'n, (0(—mE)) = (0), i >0
Now examine the exact sequence:

O I ijn Ll’l Ln/men s 0

The Hilbert polynomial for y (L") certainly satisfies the conditions on P.
Moreover, in view of i) and ii); we have for m > 0:

1 (X, #"L") = y (B, n*L"(—mE)) = x(B,(n*L)®" ® 0(—E)®")

so, a theorem of Snapper [5, 21] guarantees that this last Euler characteristic
is also a polynomial of the required type for large m and n. By the additivity
of ¥ we are done.

1) This result and its geometric interpretation are essentially due to C. P. Rama-
nujam [16].
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DEEINITION 2.2. In the situation of Proposition 2.1, we denote by e (F)
(the multiplicity of F measured via L) the integer n.l.c.(y (L"/#"L")).

ExampLes. i) If # = 0 and X is complete, P is the Hilbert polynomial
of L. ii) If Z is set-theoretically a point x then P is the Hilbert-Samuel
polynomial of 4 as an ideal of 0, y and e () is its multiplicity there: in
particular, it is independent of L. Note that, in general, e; (#) depends on
the formal completion of X along Z and the pull-backs of #,L to this
formal completion.

2.3. CLASSICAL GEOMETRIC INTERPRETATION. Let X" < P" be a pro-
jective variety, L = Oy (1), and A be a subspace of I' (P", 0 (1)). Define L,
to be the linear subspace of P” given by s = 0, s € A. Define .# ; to be the
ideal sheaf generated by the sections s € 4, i.e. £, . L is the subsheaf of L
generated by those sections and Z = Supp (Ox/F,) = X n L, is the set
of their base points.

Ifpg:P"— L, - P(A) = P" is the canonical projection, and = is the
blow-up of X along ., then there is a unique map g making the following
diagram commute:

Iés py
X —2Z ; — |

7
9, Q ,/' q

V4
X e B =By, (X)

~ Moreover, because sections of Op. (1) pull back to sections of #,.L on X

and are blown-up to sections of L twisted by minus the exceptional divisor E,

(2.4) q* (Op,(1)) = (n*L)(—E).

Define p, (X), the image of X by the projection p,, to be [cycle (g (B)]:
that is, ¢ (B) with multiplicity equal to the degree of B over g (B) if these
have the same dimension and 0 otherwise. I claim

PROPOSITION 2.5. ey (F,) = deg X — deg p, (X).

Proof. If H is the divisor class of a hyperplane section on X, then
deg X = (H") = n.l.c.(x(0x(n)).
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By 2.4, q is defined by the linear system of divisors of the formn~ ' (H) — E,

hence
degpy(x) = (o' (H)—E)") = nl.c.y(n*(0(n)(—nE)).

Finally, from its definition

er(J,4) =nlc. g ((OX (n)/ F"0x ("))
= nl.c. x (0x (n)) — nlc. x(F£"0x (n))
= deg X — degp,(X)

This proof brings out the geometry even more clearly. If H,, ..., H,
are generic hyperplanes in P" then

deg(X) = # (X n H; n ... H,), (# denoting cardinality) .
As the H; specialize to hyperplanes H;' of the form s = 0, s € A (remaining
otherwise generic) the points in this intersection specialize to either:

1) points outside Z: these points correspond to points in the intersection of
Im (¢q) with r generic hyperplanes on P”, and each of these is the special-
ization of deg ¢ of the original points i.e. deg p, (X) points specialize
in this way

ii) points in Z: e, (F,) measures the number of points which specialize
~in this way.

For example, if X! < P?is a curve of degree d, y = (0,0, 1) is on X and
A =kXy+ kX;, then | Z| = {y}, ps(x0, X1, x;) = (%9, x;) and the
picture is:

Pi

> P4 (X)
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Thus p, (X) = (aP'), where a is the degree of the covering p; a generic line
meets X in d points and as this line specializes to a non-tangent line through
y it meets X at y on mult , (X) = e, (J,) points and meets X away from y in
d — e, (#,) = a points.

The following technical facts will be useful in calculating the the in-
variants e (5).

PROPOSITION 2.6. a) If (in the situation of Proposition2.1) L and % . L

r

n ,_
are generated by their sections then h° (L"|F"L") — ey (F) 0 } = O .

(Thus we can calculaie e, (F) from the dimensions of spaces of sections.)

b) Suppose, in addition, we are given a diagram

X :;? onf_l(o)

|
f| [
¥
Spec(A4) 3 0
where f is proper, and a finite dimensional vector space W = I' (X, L) which
1) generates S . L R
ii) defines a closed immersion X — X, c— P (W)
Then the dimensions of the kernel and cokernel of the map

(I (X, L")/A-submodule generated by the image of W®" —» T (L”/f"L")
are both O (n"™1).

Proof. The idea in a) is to show that A'(L"/S#".L") = O n "),
i = 1. We first remark that is a compactification X of X over which L
extends to a line bundle L such that

i) Lis generated by its sections

i) some W < I' (X, L) which generates .# . L extends to a
W<crIX,L).
Indeed, on any compactification X, there exists a coherent sheaf % such that
F|x = L and & has properties i) and ii), and the pullback of % to the
blow-up Bz, (X) is a line bundle with these properties: so we might as well

replace X by B3 (X). Then if we take an ideal sheaf .# such that W generates
J. L, #=F.5 where #' is supported on X — X only, and it suffices
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~ toshow A" (L") #"[") = O (W'~ ') i =1since L") y"[" ~ [*/9"[" @ L"|#™. "
so this bounds A° (L"/#"L"). To do this, it suffices, in turn, to bound
R (X,L") and h'(X, #".L") = h*(By (X), L(—E)®") (where E is the
exceptional divisor on By (X)). These bounds follow from:

Lemma 2.7. If X' is proper over k and L is a line bundle on X gen-
erated by its sections, then h' (L®") = O (n"™1), i>1.

Proof. Let X, be the image of X in P” under the map given by the sec-
tions of L. Then L = n* (O, (1)) and

H'(X,L®"). = H'(X, n* (0, (n))

~ H° (XO: (Rin=x<(9x0) @ Ox, (n))
for n large.

The last isomorphism follows from first applying the Leray spectral sequence,
and then noting that all the terms involving higher cohomology groups
vanish for large n, by the ampleness of Oy, (1). But if p e Supp Rin,Ox,
for i = 1, the fibre 77! (p) has positive dimension, hence dim Supp R'n, 0,
= r — 1 which gives the desired O (n"~') bound on the dimension of the
last space.

A suitable compactification and an argument like that in the proof of a),
reduce the part of the statement of b) about the cokernel to bounding an
h' (#™. L") and this is accompanied as in a) by a blow-up and the lemma.
The procedure for dealing with the kernel is somewhat different: What we
want to control is the dimension

(H® (#"L")/ A-submodule generated by the image of W®”")
That is to say, for n > 0, the dimension of:
(H°(B(X )-,’ n*L" (—nE))/A-submodule generated by image of W®")

Let B = B, (X) and g be the proper, birational map B 2, B’ = P" x Spec 4
induced by W. Then ¢* (0 (1)) = n*L (—E) and for large n, we have

H°(B,L" (—nkE)) = H° (B, q, (0p) ® Op (n))

A-sub'module U(
generated by ~ H°(B', 0y (n))
the image of W®"
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The cokernel of the inclusion on the right is just H° (B’, 75 (0)]0 5 (1)).
But the support of this last sheaf is proper over 0 € Spec 4, hence of dimen-
sion less than r, so a final application of the lemma completes the
proof.

2.8. Fix : X" < P" a projective variety,
X,, ..., X, coordinates on P”,
&, the Chow form of X,

tPo 0
A1) = : tTR pp=py > =, =0,
0 Zﬂn—*
ki chosen so that thisis a 1-PS of SL (n+1), i.e. k = — > p;/n+1.

We define an ideal sheaf 4 < Oy, 41 by

S [0y (1) ® 0,1] = subsheaf generated by { ' X;},i=20,..,n.

REMARKS. 1) From an examination of the generators of £, one sees
that the support of the subscheme Z = 0y, ,1/# is concentrated over
© 0Oe A'; if we normalize the p; so that p, = 0 then the support of £ also
;i lies over the section X, = 0 in X.

11) Consider the weighted flag:

Xi=...=X,=0) c(X,=...=X,=0) = ... =« (X,=0) '
1 | |l
Ly L, L,y
weight p, weight p, weight p,_

The subscheme Z looks roughly like a union of p;/"-order normal neigh-
borhoods of L; n X. It is easily seen to depend only on the weighted flag
and not on the splitting defined by A.




iii) Roughly speaking, e, A1®(QX(l)(f), which we will denote e (%)
measures the degree of contact of this weighted flag with X', The fnultiplicity
of # can be expected to get bigger, for example, if L, becomes a more
singular point of X or if L,_ oscillates to X to higher degree. The main
theorem of this chapter makes this more precise:

THEOREM 2.9. In the situation of 2.8, ®y is stable (resp. : semi-stable)
with respect to A if and only if :
(r+1)degX

) < . -
e (5) o i;OpL

(r+1)degXx Z
resp.: e(F) = . .
< p.: e(S) e izZO pi

Proof. We begin with a definition.

DeriNiTION 2.10. If w:G,, —» GL (W) is a representation of G,, and
W, is the eigenspace where G,, acts by the character t', then the u-weight

o0

of Wiis >, i.dim W, If we W, then we say i is the p-weight of w.

i=—ow

1) It seems to be a general fact of life that one must go up to some (+ 1) dimensional
variety—here X X Al—to measure such a contact on an r-dimensional variety.
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1) THE LIMIT CcYCLE. If X*® is the image of X by A(7), then taking
lim X*® gives a scheme X*(° and an underlying cycle X, both of which
t—0

b
are fixed by A. Moreover, @, = (P,)*® soif &, = Z ®y; where

@y ; is the component of Py in the i™ weight space; then

b
Dry = Z t' Py
= 1°[ Py ,+1 (other terms)]

Hence, @3 = @y, and a is the A-weight of @%. By definition, @y is stable
(resp: semi-stable) with respect to A if and only if @ < 0 (resp: a = 0) or
equivalently if and only if the A-weight of @% is < 0 (resp: == 0).

2) The next step is to connect this weight with a Hilbert polynomial;
this is done by:

ProroSITION 2.11. Let V" < P be fixed by a 1-PSA of SL(n+1),
let I be the homogeneous ideal of V and let R, = (k [xq, ..., X,J/I), (i.e.

V = Proj ( @ R)). Let a, be the \-weight of &, and r) be the J-weight

n=0
of R,. Then forlarge n, r) isrepresented by a polynomial in n of degree at
most (r+1) with nlc. ay.

Proof. a) Assume V is linear. In suitable coordinates, we can write

£ 0
V=V(X,¢.., X, and 1(t) = : . Then in the notation

0 ' |

of 1.16, the Chow form of V is the monomial

®, = det(UY), i,j =0,...,n.

Hence &7 = @, and has weight Y a;. On the other hand the A-weight of
i=0

R, depends only on qy ... a,, is symmetric in these weights, and is linear in
r

the vector (ay, ..., a,), hence depends only on 2 a;. By considering the case
i=0
dg = ... = a, we see that




N

n

Vv i . n n
Fn = 7 a;) dim R, = a, . —- .
r+1(i;0 ) Y+ 1 <I’>

which is certainly of the form claimed.

b) V' is a positive cycle of linear spaces. Here it is more convenient to
consider the ideal 7 instead of V. By noetherian induction, we can suppose
the claim proven for all A-fixed ideals I’ 2 I. Then if V' = Y a;L;, let J; be
the ideal of L, and choose an a e k [X] — I which is a A-eigenvector of
weight, say, w and such that J; ¢ < 1. Now look at the exact sequence:

0—a+1/I >k[x]/I >k[x]/I +a — O

The claim is true for / + a by the noetherian induction. If I’ = {f | afel}
> Jy 2 I, then via the shift of weights by w, a + I/I = k [x]/I"; but this
shift changes the A-weight by an amount w.dim [(k [x]/]"),]) = O (n"),
hence does not affect the leading coefficient of the A-weight. The claim for
I’, which also follows from the noetherian induction, thus proves the claim
for I.

¢) Reduction to case b). Recall the Borel fixed point theorem: if G is a
connected solvable algebraic group acting on a projective variety W, then

there is a fixed point on O¢ (y) for every y € W. Let [V] be the associated
point of V' in Hilbp. and consider the orbit of [I'] under the action of a
maximal torus 7' = SL (n+1) containing A (¢). Let [V,] be a T-invariant

point in O ([V]). Then V¥, is a sum of linear spaces, since these are the
only T-invariant subvarieties of P". If we decompose @, by @, = ) &7,

where o runs over the characters of 7' and @7 is the part of @, on which T
acts with weight «, then for anyt € 7, @}, = ) c¢; @7 for suitable constants
a

¢y Since @y, is both T-invariant and a limit of forms @y, 1€ T, ¢y, = &*
for some o. Moreover since V is a A-invariant point, all the characters «
appearing in the decomposition of @, must have the same value on /,
hence the A-weight of @y, is the A-weight of @y

It remains only to compare the homogeneous coordinate rings. Now
V and V, are members of a flat family V,, ¢ € S for some connected parameter
space S, so that if n > 0, H® (V,, Oy, (n)) are the fibres of a vector bundle
over S. This means that the A-action on these fibres varies continuously,
hence that the A-weights of all the fibres are equal. Now the claim for V'

follows from b).
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REMARK. The relation between Chow forms and Hilbert points in ¢)
is really much more general: in fact, Knudsen [12] has shown that there is
a canonical isomorphism of 1-dimensional vector spaces k. @, = [(r+ 1)
“differences”—formed via ®-—of successive spaces in the sequence
Adm R”R,,], and it is possible to base the whole proof of 2.11 on this.

3) Next we will see how to obtain X*¢°) by blowing up .#. Consider the
map
Ay - G,x X - P

(t, X) = (1) (x).

If the embedding of X is defined by sy, ..., 5, € I [X, O (1)] and the action of
) (1) is by (ag, ..., a,) = (t"aq, ..., t""a,) with ro =r, = ... >r, and ) r;
i=0

= 0(i.e. (0, ..., 0, 1) is an attractive fixed point and (1, O, ..., 0) is a repulsive
fixed point), then A*, (X,) = ¢'is;, Now 777 is a unit on G, X X, so
changing the identification AY (Op» (1)) = Ug,, ® Ox (1) by this unit we
can assume A} (X,) = t?is; where p; = r; — y is normalized as in 2.8 so
that p, = 0. Then A; “extends” to a rational map A'x X — P" which is
defined by the section { t”is;} eI’ (A'X X, p530x (1). F is just the ideal
sheaf these generate in 0,1,y and Z is just the set of base points of the
rational map. Blowing up along # gives the picture

E B = B,(A! xX)
exceptional C_....,
divisor
Al x X Al x P"

p/ pl\ /pl
X Al

where the morphism A is defined by the sections { ¢* “s;} in I' [B, (pon)*
(0 (1)) (—E)]. Now Im (A) is the closed subscheme of A! x P" gjven by

Proj( @ R,) where

0
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k [t]-submodule of I' (X, 0 (m)) ® k [1]
generated by m™ degree monomials in { #”%s; }

2.12) R, = [

In fact, Im A4 is flat over A, because of:

LEMMA 2.13. Let S be a non-singular curve, X flat over S and f: X
— Y be a proper map over S. Then the scheme (f(X), Oy/ker f*) is flat
over S.

Proof. We may as well suppose S = Spec R; and then this amounts to
showing the Oy/ker f* has no R-torsion: if a € Oy/ker f*, re R, then
r.a=0=r.f*a=0=f*a=0=a=0.

In particular, we see that X*(°) is the fibre of Im 4 over ¢ = 0, i.e. X*(?)
= Proj ( @ Rm/tRm)'

m=0

4) The proof is completed by making precise the relation between £
and the A-weight of 3. One must be careful however because there are two
G,-actions on R, /tR,, that given by the identification R,/tR, = @ (¢"%s)) k,
which is just 4, and that given by the identification R,/tR, = @ (¢’'s;) k;
call this action p. The weights of 4 on R, /tR,, are just those of 4 translated
by my. By Proposition 2.11

A-weight of &3 = n.l.c. (A-weight of R, /tR,,)

= n.l.c. (u-weight of R, /tR,,+ym dim (R,/tR,,))
r+1degX ! >

Zpi

n+1 i=0

= n.l.c. (u-weight of R, /tR,) — (

. and

using y =

r

m
dim (R,/tR,) = (deg X/I(O)) — + lower terms

deg X) m'
(»gAj) — + lower terms.
r

A droll lemma allows us to re-express the p-weight of R, /tR,,.

LemMa 2.14. Let W be a k-vector space and let G,, actby u on W
with weights p, = p,-1 ... =po = 0. Let W; be the eigenspace of weight
p, andlet W* be the k [t]-submodule of W ® k [t] generated by @ t"*W
Then dim (k [t] ® W]W?*) = u-weight of W*[tW*.
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| A
Qn +1 P +1
l % , b W
On Cn
t W, W,
0.+ 0+
Wt W
?n-d ?n-i
t Wt W
weight here W’ ove
) ) . i v
COMPARE dimension of ?h'
: is
 WRk[t]: this %olumn h
E 0, +1 ?4 %1 Ine \,
% W t W. t Wrﬁ
n n-1
€4 €1
t Wt W,
t W t W
n n-1
wn wn—-1

i above this line W'*

Recalling the definition of R, (2.12), and applying this to the u-action on
R,/tR,, we see that the u-weight of R,/tR, is just: dim (I (X, 0 (m))
®,k [t]/R,). But the sections { #”s; } whose m'™ tensor powers generate
R, also generate .# . p3 (0xyy) so by a) and b) of Proposition 2.6, this
last dimension can be used to calculate e (#). Putting all this together, we
see that:

@, is stable with respect to A
< A-weight of &, < 0
(r+1) .

e (fF) — (n_-l_—T)degX Y pi<O
i=0

which, with the analogous statement for semi-stability, is our theorem.

2.15. INTERPRETATION VIA REDUCED DEGREE.
its reduced degree is defined to be:

If X" < P” is a variety,

,u L’Enseignement mathém., t. XXIII, fasc. 1-2. s
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deg X

d. d X)) = ——M —
re eg (X) R

A very old theorem says that if X is not contained in any hyperplane then
red. deg (X) = 1. Reduced degree measures, in some sense, how compli-
catedly X sits in P”, and there are classical classifications of varieties with
small reduced degree. For example if X has reduced degree 1 and is not
contained in any hyperplane then X is either

a) a quadric hypersurface

b) the Veronese surface in P° or a cone over it

¢) a rational scroll: X = P( @ Op1 (n,)) =« P¥, n; > 0
i=0

r

where N = ) (n;+1) — 1, or a cone over it. (This is called a scroll because
i=0

the fibres P"~! of X over P, are linearly embedded.)

Some other facts about reduced degree are:

1) canonical curves, K3-surfaces and Fano 3-folds have red. deg = 2;

ii) all non-ruled surfaces and all special curves have red. deg = 2. (For
special curves, this is just a restatement of Clifford’s theorem.)

iii) for ample L on X", the embedding by L®" has reduced degree
asymptotic to r ! as n — o0;

iv) red-deg is preserved under taking of proper hyperplane sections.

It would be very interesting to know whether almost all 3-folds (in a sense
similar to that of ii) for surfaces) have red. deg = 2 + ¢. The following
definition is introduced only tentatively as a means of linking the present
ideas to older ideas (e.g. Albanese’s method to simplify singularities of
varieties): »

2.16. DEFINITION. A variety X" < P" is linearly stable (resp. linearly
semi-stable ) if, whenever L"~™"1 < P" is a linear space such that the image
cycle p; (X) of X under the projection p; : P" — L — P™ has dimension r,

then red deg p; (X) > red deg X (resp. red-deg p; (X) = red deg X).

Attention: p, is allowed to be finite to 1, and which case p, (X) must be
taken to be the image cycle. Linear stability is a property of the linear
system embedding X; if X" < P" is embedded by I' (X, L), then X linearly
stable means that for all subspaces A4 < I' (X, L)
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deg p. (X) - deg X
dimA —r n+1-—r

or equivalently, by applying Proposition 2.5,

deg X ,
e(f,) < ——— (codim A)
n+1-—r
ExAMPLES. i) when X is a curve of genus 0, it is linearly semi-stable but
not stable. When g = 1, Clifford’s theorem shows that X is linearly stable
whenever it is embedded by a complete non-special linear system (see § 4

below).

ii) P? is linearly unstable when embedded by O (n), n = 3 because it
projects to the Veronese surface. In view of the next proposition, a very
interesting problem is that of finding large classes of linearly (semi)-stable
surfaces.

(It may, however, turn out that linear stability is really too strong, or un-
predictable, a property for surfaces in which case this Proposition is not
very interesting !) |

ProrosITION 2.17. Fix X" < P", let C be any smooth curve and let L
be an ample line bundle on C. Let &;:C x X —» PN be the embedding
defined by {S; ® X,} where {S;} is a basis of I' (L®)) and X,
eI (X, Oy (1)) are the homogeneous coordinates. If @, (C* X) is linearly
semi-stable for all large i, then X" is Chow-semi-stable.

10 0

_ Xp;

Proof. Choose a 1-PS: A(1) = . t 1

- O tﬂn

as in (2.8).
Choose a point p € C an isomorphism L, = 0, and an i large enough that
L®" is very ample and L® (—p,p) is non-special. Then the map

n n

® I(C,L%).X,— 2, @ [0,c]M].X;
1=1 I1=0

is surjective. Let A’ be the inverse image of @ [(M% /Ml 70¢) © X ] under
=0

this map and let & ,’1 < Ocyx be the induced ideal. Since all the L®! are
trivial near p and .# 4 has support on the fibre of X x C over P, the ideals
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# 4 are independent of i; we denote this ideal by £ 4. The hypothesis says
that for large i

e(s) = GBCXX) imA
(n+ 1) (R° (LY —r —1)
(r+1)deg X deg L®"

-Zpl

T (1) (deg L —g+1) —r—1 5

and letting i —» o0,
(r+1)degX

e(J ) =
(S ) i1 2

P
0

But C x X along p x X is formally isomorphic to A’ x X along 0 x X
with corresponding .# ; s, so by Theorem 2.9., X is Chow-semi-stable.

§ 3. EFFECT OF SINGULAR POINTS ON STABILITY

We begin with an application of Theorem 2.9.

PROPOSITION 3.1.  Let X' < P" be a curve with no embedded components
such that deg X/n+1 < 8/7. If X is Chow-semi-stable, then X has at
most ordinary double points.

REMARKS. 1) When n = 2, deg X/n+1 < 8/7 <> deg X < 4 and the
proposition confirms what we have seen in 1.10 and 1.11

ii) Suppose L is ample on X' and X,, = PY™ is the embedding of X
defined by I' (X, L®™). By Riemann-Roch, deg X,/ N(m) — 1 as m — oo, hence:

COROLLARY 3.2. An asymptotically stable curve X has at most ordinary
double points.

In particular, if X < P? has degree =4 and has one ordinary cusp,
then, in P2, X is stable but when re-embedded in high enough space, X is
unstable! The fact that this surprising flip happens was discovered by
D. Gieseker and came as an amazing revelation to me, as I had previously
assumed without proof the opposite.

ii1) We will see in Proposition 3.14 that the constant 8/7 is best possible.
Proofof3.1. We note first that a semi-stable X of any dimension cannot

be contained in a hyperplane: if X = V' (X,), then X has only positive
weights with respect to the 1-PS
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