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ALTERNATIVE HOMOTOPY THEORIES!

by I. M. JAMES

Dedicated to Beno Eckmann on the occasion of his 60th birthday

1. INTRODUCTION

Recently there has been considerable interest in the theory of G-spaces,
where G is a topological group. The purpose of this lecture is to describe
some of the work that has been done at Oxford in the past few years,
particularly work concerned with equivariant homotopy theory and the
associated homotopy theory of spaces over a given space. Little is known
about these alternative homotopy theories outside the ‘“stable range”.
Special emphasis will therefore be placed on non-stable questions, such
as the existence of Hopf structures and the Whitehead product theory.
Before embarking on this, however, I would like to make a few preliminary
remarks.

Let us begin by considering the category of (right) G-spaces, where G
is a topological group. Both the product x and the join * are defined in this
category. Among the concepts which seem to belong here is that of group
G-space. We say that a G-space 4 is a group G-space if G is a topological
group with equivariant multiplication 4 X 4 — A. This implies, of course,
that inversion is also equivariant and that the neutral element e is a fixed
point. Note that G itself constitutes a group G-space under the action of
conjugation.

Let f: X - Y be a G-map, where X and Y are G-spaces. Let f#: X
— Y denote the corresponding map of the fixed-point sets, for any sub-
group H < G. Clearly /7 is a homotopy equivalence if /is a G-homotopy
cquivalence. Recently Segal [13] has proved that conversely fis a G-homo-
topy equivalence provided (i) X and Y are G-ANR’s, (ii) G is a compact Lie
group and (iii) f# is a homotopy equivalence for every closed subgroup
H of G. This important theorem enables many results of ordinary homotopy
theory to be generalized to equivariant homotopy theory.

1) Presented at the Colloquium on Topology and Algebra, April 1977, Zurich.
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In general it is difficult to say very much about the space of equivariant
maps. However, the following example, due to George Wilson [19], is
instructive ). Take G = SO (g), the rotation group, and 4 = S9!,
where ¢ > 1. Let B and C be trivial G-spaces. Choose a point a, € S?7!
and consider both the cone TB = { a, } * B = S? ' * B and the suspension
SC={+a}*Cc ST *C. Every G-map f:S? "B - ST 1*C is
determined by its values on TB. Moreover f| TB determines a map f”:
(TB, B) — (SC, C), from consideration of the fixed point sets of the isotropy
subgroups, and conversely every such map f” determines a G-map f by f (xg)
= (f'x)g (xeTB, geG).

Let P be a principal G-bundle over a space X. To every G-space A there
is associated a G-bundle P.A with fibre A4, and similarly with G-maps. We
refer to Py as the principal functor. Note that trivial G-spaces transform into
trivial bundles; thus the fixed point set A¢ of 4 transforms into the trivial
subbundle P_,A¢ of P,A. In particular every fixed point a € 4 determines
a cross-section Pa of P A.

Any self-functor F on the category of G-spaces can be extended to the
category of G-bundles by defining FP. A = P,FA. Binary functors are
treated similarly. Thus the product x and the join * in the category of G-
spaces transform, under P, into the (fibre) product x and the (fibre) join *
in the category of G-bundles.

Here is a less familiar example, currently being investigated by my
research student Duncan Harvey. Let A be a G-space with distinct fixed
points (ay, ...,a,). For n = 1,2, ... the configuration space F, ,4 of 4
is defined as the space of n-tuples (xy, ..., x,) of distinct points in 4 —
{ay,..,a,}. Regard F,, A4 as a G-space with action as in 4". Write E, ,,
= P,F, A, where E = P A. Then E, , can be described as the bundle
whose fibre over the point x € X is the configuration space F, ,.E, relative to
(51X, ..., S,X), Where Sy = Paay, .., Sy = Pyay,,

It may happen that a G-map is homotopic to the identity but not G-
homotopic. In that case it is interesting to try and determine the principal
G-bundles P with the property that the image of the G-map under P, is
fibre homotopic to the identity. This question has been studied in [8] for
the antipodal map on the SO (g)-space S?~ ! (g even), and we continue this
investigation here from a rather different point of view.

In ordinary homotopy theory the advantages of introducing basepoints
are well understood. In equivariant homotopy theory the advantages are

Yy Actually [19] treats the case ¢ = 3 when B and C are spheres.
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similar. We work with the category of pointed G-spaces, i.e. G-spaces with
fixed point. The suspension functor X and the loop-space functor Q are
then defined, also the binary functors wedge v and smash A. This cor-
responds, of course, to the category of sectioned G-bundles, i.e. G-bundles
with cross-section, where these functors are also defined and commute with
the principal functor. We prefer, however, to enlarge this to the category
of ex-spaces — see § 4.

2. EQUIVARIANT HOMOTOPY THEORY

Let G be a topological group and let A; (i=1, 2) be a pointed G-space,
The space of pointed G-maps f: A, > A, is denoted by Mg (4,, 4,),
and the set of pointed G-homotopy classes of pointed G-maps by 7 (44, 4,).
The class of the constant map e: 4, — A, is denoted by 0. In this context
we reserve the symbol ~ for the relation of pointed G-homotopy.

Let 4 be a pointed G-space with base-point a4, and letp, g: 4 - A X A4
be given by

p(X) = (xaa'O)a Q(X) = (amx) (XEA)

By a Hopf G-structure on A we mean a pointed G-map m: 4 X A - A
such that
mp~1~mqg:4A - A4;

given such a structure we refer to 4 as a Hopf G-space. For example, the
reduced product space 4, (see [5]) of any pointed G-space A4 is an associative
Hopf G-space 1). If 4, 1s a Hopf G-space then n; (A4,, 4,), for any pointed
G-space A, obtains a natural binary operation with 0 as neutral element ?).

If m: A X A — A satisfies the conditions for a topological group then,
as before, we describe A as a group G-space. If m satisfies these conditions
up to pointed G-homotopy then we describe 4 as a group-like G-space.
Note that ng (44, A,) is a group when A4, is group-like. This is so, in par-
ticular, when A4, = QA, with standard Hopf G-structure for any pointed
G-space A,. If A, itself is a Hopf G-space then the group is abelian, by the
usual argument.

1) Under suitable conditions it can be shown, using Segal’s theorem, that Ay has
the same pointed G-homotopy type as QX A4.

%) Another application of Segal’s theorem is to show, following Sugawara [14], that
this binary set forms a loop, under suitable conditions, and hence a group when the
Hopf G-structure is pointed G-homotopy associative.
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The notions of coHopf G-space and cogroup-like G-space are defined in
the obvious way. If 4, is a coHopf G-space then s (4,, 4,), for any pointed
G-space A4,, obtains a binary operation with 0 as neutral element; moreover
ng (A4, A,)1s a group when A, is cogroup-like. In particular X4, is cogroup-
like, for any pointed G-space A4, and the adjoint functor determines an
isomorphism

Simg(ZAq, Ay) = 1 (A, Q4) .

Using this we can define Whitehead products in equivariant homotopy
theory as follows.

We say that a pointed G-space X is well-based if there exists a neigh-
bourhood U of the basepoint x, in X such that

(1) x4 1s an equivariant deformation retract, rel x,, of U, and

(i) there exists an invariant map u: X — I such that ux, = 1 and ux
= 0 for x ¢ U.

Let A, B be well-based G-spaces. Then (cf. [12]) for any pointed G-space
Y the equivariant form of the Puppe sequence

P %
0>7ng(AAB,QY) = ng(AXB,QY) = ng(AvB,QY) - 0

is exact. Here g denotes the inclusion and p the collapsing map. From given
elements o € g (A4, QY), f eng (B, QY) we can obtain o', f” e ng (4
X B, QY) by precomposition with the structural maps of the product.
Since the commutator «”~!.B""1.a”. " lies in the kernel of g* there
exists, by exactness, a (unique) element

<a',p'>eng(AAB,QY)
with image this commutator. The Samelson pairing
g (A, QY) x ng (B, 2Y) » n5(A AB, QY)
thus defined is bilinear, just as in [1], and has the property that
<a',f'> = —-T*<pf',a" >,

where T denotes the switching map. The Whitehead product [o, ] of elements
xveng(ZA, Y), feng (2B, Y) is defined by

(Lo, Bl = <8, EB>,
where ¢ denotes the adjoint isomorphism. Clearly the Whitehead pairing
ng(ZA,Y) x 15(ZB,Y) > ng(Z (A AB), Y)
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thus defined is bilinear and has the property that
(2.1) [0, 8] = —(2T)*[B,o].

It is a straightforward exercise, as in the ordinary theory, to show that the
Whitehead pairing vanishes if Y is a Hopf G-space, and hence vanishes
under suspension. Moreover the suspension XZ of a compact well-based
G-space Z is a Hopf G-space if and only if the Whitehead square

w(XZ)eng(Z(Z A Z),2Z)

of the identity vanishes.

It should also be noted that the Jacobi identity holds for Samelson
products and hence for Whitehead products, by an equivariant version
of the argument given by G. W. Whitehead [16]. Specifically, consider the
permutations

BACAA 5> AABAC 5> CABAA,

where A4, B, C are suspensions of pointed G-spaces. Let
OCETIG(E*A: Y) » ﬁ ETCG(ZBa Y) > Y EHG(ZCa Y) >

where Y is a pointed G-space. Then the relation

(2.2)  [e, [B,7]1] + (Zo)* [B, [y, o2]] + (Z0)* [y, [«, B]] = O
holds in the group n; (2 (AABAC), Y).

3. SOME EXAMPLES

We need to begin by discussing briefly some relations between the categ-
ory of G-spaces and the category of pointed G-spaces, as follows. Given
spaces 4, B we denote points of the join A*B by triples (a, b, t) where
a€d, beB, tel, so that (a, b, t) is independent of @ when ¢ = 0, of b
-~ when ¢ = 1. A basepoint b, € B determines a basepoint (g, b,, 0) in 4*B.
" If A, B are G-spaces we make A*B a G-space with action

| (a,b,1)g = (ag,bg,t) (9eG).
~ Note that A*B is pointed if B is. When B = S°, with trivial action, then

~ A*B = XA, the unreduced suspension 2).

1) This differs by an automorphism from the normal definition.
®) We regard this as an identification space of the cylinder, in the usual way.
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When A4 is a pointed G-space the reduced suspension X4 is also defined

and the natural projection ¥4 — X4 is a pointed G-homotopy equivalence
if A 1s well-based. Moreover, if 4 and B are well-based the natural projection
A*B - 2 (A AB) is also a pointed G-homotopy equivalence. We need a
variant of this result. B CL

Suppose now that 4 = X4, B = YB’, where A’, B’ are G-spaces.
Consider the pointed G-map

k:X(A'*B") > (XA'AXB') = A A B
which is given by the formula

((a’, 2s1), (b, ) (0<t <),
((a’, ), (b", s(2—21))) (Lo<t<1).

It is easy to check that k is a pointed G-homotopy equivalence, under similar
conditions, and has the property that

k((a',b',t),s) = {

(3.1) kIS = Tk,

where S: A*B — B*A denotes the switching map of the joinand 7: 4 A B
— B A A the switching map of the smash product.
In particular, take G to be the group O (m) (m >2) of orthogonal

transformations of the sphere S™~'. The antipodal map a: S™ ! - §™~!
A

is an O (m)-map, hence a = Za: S™ —- S™ is a pointed O (m)-map. 1
assert that

(3.2) T:;/\]:S"’/\S’”—»S’"/\S"‘.

For the switching self-map S of S™~'*S™~! is O (m)-homotopic to a*l,
by elementary rotation in R*" = R™ x R™ Hence 2~7S is pointed O (m)-

homotopic to g’(a*l). From (3.1), therefore, we obtain that

Tk = kXS ~kZ(@*l) = @nl)k.
Since k£ is a pointed O (m)-homotopy equivalence this proves (3.2). In

this case, therefore, T can be replaced by a A 1 in the commutation law (2.1).

We now turn to the permutations appearing in (2.2), the Jacobi identity.
More general]y let A;(i=1, ..., n) be a G-space. Points of the multiple join
A;* ... %A, can be represented by n-tuples of the form
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(tlalla--'atnai;) (a;EAia tiEI)

where tZ + ... + ¢t2 = 1. The radius vector through (¢, ..., #,) meets the
boundary of the n-cube I" in a point (xy, ..., X,), say, where at least one
coordinate is equal to 1. Thus a pointed G-homotopy equivalence

LY (A* .. %A) > ZA, A ... A ZA,
is given by
[((tyays o tyay) , s) = ((sX1, a1), ..., (5X,, a,)) .

Clearly / is equivariant with respect to the action of the symmetric group
on the suspension of the multiple join and on the multiple smash product.

In particular, take G = O (m) and 4, = S™ !, for all i. Let u be a
permutation of the multiple join and v the corresponding permutation of
the multiple smash product. We distinguish cases according as to whether
the degree of the permutation is even or odd. In the even case u is G-homo-
topic to the identity 1, on the n-fold join, using elementary rotations as
before, and hence v is pointed G-homotopic to the identity 1, on the n-fold

smash product. In the odd case it follows similarly that u is G-homotopic

to 1,_,*a, hence v is pointed G-homotopic to 1,_; A a. Taking n = 3,
therefore, we see that the automorphisms which appear in (2.2) are trivial,
in this example, and so

(33) 3 [Z*Ima [Z* L Z*lnr]] =0

in 7g (S, §™*1), where 1,, denotes the pointed O (m)-homotopy class
of the identity on S™. It is easy to see, incidentally, that the Whitehead
square [0, Zyl,] € g (ST, S™* 1} is of infinite order, for all m >2.

4. EX-HOMOTOPY THEORY

For our second example of an alternative homotopy theory we take the

category of ex-spaces (see [7] for details), which is an enlargement of the
g category of sectioned bundles mentioned earlier. We recall that, with regard
to a given space X, an ex-space consists of a space E together with maps

X 5 E S x

such that po = 1. We refer to p as the projection, to ¢ as the section, and
B (0 (p, o) as the ex-structure. Let E; (i=1, 2) be an ex-space with ex-structure




— 228 —

(pi, 0;). Wedescribe amap f: E; — E, asan ex-map if fo, = 0,, p, f = py,
as shown in the following diagram.

oy . Ei < py
g

v N
X f X

AN A
LN ¥ S/

\4
%) E, / P2

In particular we refer to ¢ = o, p, as the trivial ex-map. We also describe a
homotopy A,: E; — E, as an ex-homotopy if h, is an ex-map throughout.
The set of ex-homotopy classes of ex-maps is denoted by 7y (E,, E,) and
the class of the trivial ex-map by 0.

In particular, suppose that E; is a sectioned bundle with locally compact
fibre. For each point x € X the fibre p;' (x) is equipped with basepoint
o; (x). Consider the fibre bundle M = M, (E, E,) which is formed, in the
usual way (see [2]) from the function-spaces of pointed maps pi’* (x)
— p3 ' (x). To each ex-map f: E, —» E, there corresponds a cross-section
f': X - M, where f' (x) is given by the restriction of f to the fibre over x,
and conversely every such cross-section determines an ex-map. We shall
exploit this correspondence in the next section.

Now let P be a principal G-bundle over X, where G is a topological
group. For any pointed G-space A the pointed G-bundle P,A can be
regarded as an ex-space, and similarly with pointed G-maps. Thus P
constitutes a functor from the category of pointed G-spaces to the category
of ex-spaces, and determines a function

Pying (A, Ay) > nx(E(LEy),

where 4; (i=1, 2) is a pointed G-space and E; = P_A4,. Of course, in general
P, is neither injective nor surjective.

As we have seen in § 1 a functor F in the category of pointed G-spaces
defines a functor F in the category of sectioned G-bundles; in many cases
such a functor can be extended to the category of ex-spaces. For example,
the suspension functor 2 and the loop-space functor Q2 can be so extended,
also the binary functors product x, wedge v, and smash A. Similarly the
notions of Hopf ex-space, etc.; can be introduced, following the standard
formal procedure, so that P transforms Hopf G-spaces into Hopf ex-
spaces, and so forth. Note that XF is cogroup-like and QF group-like, for any
ex-space E.

|
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The Whitehead product theory for ex-spaces has been worked out by
Eggar [4]. His definition is such that if 4, B, Y are as in §2 and o € 1
(ZA, Y), feng (2B, Y) then

(4.1) [P#O‘»P#ﬁ] = Py [“aﬁ]

in ny (X (PxAANP4B),P,Y). Since we shall only be concerned with ele-
ments in the image of P we can introduce (4.1) as a piece of notation,
without going into the details of Eggar’s theory.

5. THE REGISTER THEOREM

In this section we suppose that X is a finite simply-connected C'W-
complex, although the results obtained can no doubt be generalized. We
define the register reg (X) of X to be the number of positive integers r
such that, for some abelian group A, the cohomology group H" (X; A)
is non-trivial. If X is a sphere, for example, then reg (X) = 1.

Let p: M — X be a fibration with fibre N. If a cross-section s: X —» M
exists then sp: M — M is a fibre-preserving map which is constant on the
fibre. Conversely if k: M — M is a fibre-preserving map which is nul-
homotopic on the fibre then M admits a cross-section as shown by Noakes
[11]. We use similar arguments to prove

THEOREM (5.1). Let k: M — M be a fibre-preserving map such that
[: N — N is nulhomotopic, where | = k|N, and let s,t: X —- M be
cross-sections. Then k"s and k"t are vertically homotopic, where r = reg (X).

The n-section (n=0, 1, ...) of the complex X is denoted by X". Since X

- is connected we have a vertical homotopy of s into # over X°. This starts an

induction. Suppose that for some n > 1 and some g = g (n) >>1 we have

 a vertical homotopy of k% into k%t over X"~ !, so that the separation class

d = d(K's, k't e H" (X; 7, (N))

is defined. If the cohomology group vanishes then d = 0 and k%s ~ k%

L over X". But in any case the induced endomorphism /, of 7, (V) is trivial,

by hypothesis, and so d lies in the kernel of the coefficient endomorphism /..
¢ determined by /,. Therefore

d(k s, k) = 1,d =0

>
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and so k%"'s ~ k"'t over X". Hence, by induction, we obtain (5.1). Of
course the value of r can often be improved in particular cases.

COROLLARY (5.2). Let E be a fibre bundle over X with locally compact
Jibre F, which admits a cross-section. Choose a cross-section and so regard
E as an ex-space. Let f:E — E be an ex-map such that g: F — F is nul-
homotopic, where g = f|F. Then f'™"' ~ ¢, the trivial ex-map, where
r = reg (X).

To see this, take M = My (E, E), in (5.1), and define k: M — M by
post-composition with f. We take s, ¢t to be the cross-sections [/, e': X
— M determined by f, e, and obtain (5.2).

Now let o, f € ny (E, E) be elements such that

(i) o* = p* and «ff = fua,
(i) Py = Pp,

where @, :7ny(E,E) > n(F, F) is given by restriction. Suppose that
E = XE’, for some ex-space E’, and that o = X, o', f = 2,p’, for some
o', ' eny (E', E"). Take fin (5.2) to be a representative of & — 5. Then
S 1is a representative of («—B)"*! = 2" (a—p) o, and so0 (5.2) shows that

(5.3) 2y = 2B

Applications will be given in §8 below.

6. THE EXACT SEQUENCE

Let X be a CW-complex with basepoint x, a O-cell. Let p: M — X be a
fibration with fibre N = p~! (x,), and let I' denote the function-space of
cross-sections. By evaluating at x, we obtain a fibration ¢: I' — N. It may
be noted that, under fairly general conditions, this fibration admits a cross-
section if and only if the original fibration is trivial, in the sense of fibre
homotopy type.

Now choose a basepoint y, € N so that ¢~ (y,) = I'y, the space of
pointed cross-sections. Choose such a cross-section s as basepoint in I’y

< I', and consider the homotopy exact sequence of the fibration as follows:

4y

A4 u,
..—>TC,.+1(N) —* Tcr(FO) — nr(F) — TC,.(N) AR

Note that I', is a deformation retract of I'y, the space of pointed maps
t: X - M such that pr ~ 1.
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In particular, suppose that X = S" (n > 1). Then s determines a homo-
topy equivalence k: Q" (N) — I'y as follows. Consider the map [: Q" (N)

— I~“ , which transforms each pointed map f: S” — N into the track sum
s + jf,wherej: N c M. Then /is a homotopy equivalence and k is obtained

by composing / with a deformation retraction I'y — I'. In this case, therefore,
we can transform our exact sequence into

D v, 4
o T (N) S e (N) S (D) S 2, (N) - e,

where v, = u,k, and D = k' A. We refer to this as the modified exact
sequence of the evaluation fibration. The operator D has been determined
in §3 of [8]. Specifically, let o en, (M) denote the class of s, and let
v€m,.q (N). Then

(6]) ]*DOC = V[j*a, O-] s

the Whitehead product in n, (M).
We shall be particularly concerned with the tail end of this sequence,

which reads

D Uy %

m(N) = 7, (N) S a(l) S a(N).

Let : S" — M also be a cross-section. Suppose that we have a path 4 in
N from s (x,) to # (x,). We can regard A as a vertical homotopy of s into ¢
over { x, }. The obstruction to extending this to a vertical homotopy over
S" is an element

o(s,t; )emn,(N).

If u is another path in N from s (x,) to ¢ (x,) the track difference 4 — u
forms a loop in N and it is easy to check that the homotopy class o € 7, (N)
of this loop satisfies the relation

Do = 8(s,t;2) — (s, t; 1) .

- Hence s and ¢ are vertically homotopic if and only if the obstruction is

- contained in D, (N).

Now let E; (i=1, 2) be a sectioned bundle over X with locally compact
~ fibre F;. We can apply the above to the function-space bundle M = M,
- (E,, E,) with fibre N = N (F,, F,), and obtain useful information about
- the ex-homotopy groups ny (X"E,, E,) (r=1, 2, ...). Details are given in [9]

- where the operator D is calculated, as follows, in case E; and E, are sphere-
- bundles over X = S".
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Given a representation ¢: SO (m) — SO (g) write
Jo = J o, n,SO(m) - m,., (SS9,

where J denotes the usual Hopf-Whitehead homomorphism. For example,
if ¢ > m and ¢ is the inclusion then

(6.2) | J, = (=1m-agn-ay,
by (3.2) of [5] (cf. [8]). If ¢ = 2mand ¢ = | @ 1 it is easily seen that
(6.3) Jy =2(=1"zmJ.

Consider the function-space N = N (S?, S%) of pointed maps S?
— SS9 We identify n;(N) (i=0, 1, ...) with n;; ,(S?) in the standard way
(see [15]). Let G be a topological group and let

¢:G —SO(p), Y:G - SO (q)

be representations of G. We regard S?, S? as pointed G-spaces using ¢,
Y, respectively. Choose a principal G-bundle P over S" with classifying
element O emn,_; (G), and take E; = P, (S?), E, = P, (S%. Then the
operator D in our exact sequence is given

(6.4) Do = oo Zr*+P—q+1 Jl]lg _ J¢0 o Zr;:rp—q_l %,

where aen, ;4 (S9. The case r = 1 of this result will be needed in §8
below.

7. THE ADJOINT G-BUNDLE

Let X be any space and let P be a principal G-bundle over X. We regard P
as a (right) G-space in the usual way. By a principal automorphism we mean
an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle
we mean the sectioned bundle Q = PG, where G acts on itself by conjuga-
tion. Note that Q is a group ex-space since G is a group G-space. We can
construct Q from G %X P by identifying

(7.1) (gag™',b) ~ (a,bg)  (aeG, beP)
for all g € G. The group ex-structure is given by
{a,b}-{ayb} ={a - a,,b} (a;,a,€0),

where { , } denotes the equivalence class of ( , ). Every principal
automorphism f of P determines a cross-section f': X — Q as follows.
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Given x € X choose any b € P ; then fb = bg, for some g € G, and we define
f'x = {g,b}. This correspondence establishes an isomorphism between
the group of principal automorphisms of P and the group of cross-sections
of Q.

Any element ¢ of the centre of G determines a G-map c, for any G-
space A. Notice that ¢, is a principal automorphism in the case of P and
that the corresponding cross-section ¢’ , of Qis givenby ¢’ {b} = {¢,b }.
When X is a sphere these central cross-sections of Q can be analysed as
follows.

Take X = S"(n > 2), so that P is a principal G-bundle over S”. Let
B" denote the n-ball with boundary S”~*. Choose a relative homeomorphism
(B", S"™1) — (S", x,) and lift this to a map k:(B", S"~!) » (P, G). The
homotopy class 6 € m,_, (G) of I = k|S"~! classifies the bundle according

to clutching theory.
Let ¢ e G be central and let A: I — G be a path such that 1(0) = e,
/. (1) = c. Consider the map A: B" X I — Q which is given by

Ay, t) = {A@), k(y)} (veB" tel).
The boundary of B” x [ is the sphere
B"x0uS""!'xTuB"x 1,
and A maps S"~! x I'into G = Q by
Ay, t) = (y).(A).(y)~",

~using (7.1). Let us compare this with the map A’ of the boundary which
agrees with A on B" x  but is given on S"~! x I'by A’ (y, ) = Ait. Now A
can be regarded as a vertical homotopy of e’ into ¢’ over { x, } and A
represents the obstruction

0 = 06(e'y, ¢y ) em, (G)
to extending this vertical homotopy over S”. Since A | (B"*I)* is nul-

homotopic, however, it follows that ¢ is also represented by d: ES"‘l — @,
where

d(y,1) = (Iy).(At).(Ip)~*.
For example, take G = SO (m), with m even. Take ¢ = —e and
A(t) = ecos mt+b sin it (0<t<),

where b denotes the matrix
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01 01 2 q
(_1 O) @ ... @(_] 0) (m/ summands) .

Then 6 = F0, by definition, where
F:n,_ SO (mj — 71,50 (m)

denotes the Bott suspension, as in [6].

Now let 4;(i=1, 2) be a locally compact pointed G-space and write
E;, = P,4A, Recall that N = N (4,, A,) denotes the function-space of
pointed maps A; — A4,. Given a pointed G-map f:A4, - 4, we can
construct an ex-map Py, f:E, - E, and a pomted G-map f:G - N,

where f(g) = g, 0o f = fo g.. | assert
ProPOSITION (7.2). The ex-maps
Pyf,PypfoPycEy > E,
are ex-homotopic if and only if

f*6eDn, (N) =, (N),
where 6 is as above.

Here D is the operator which occurs in the modified exact sequence of the
evaluation fibration derived from the function-space bundle, as in §6. The
proof of (7.2) is by naturality, as follows.

First observe that fextends to a fibre-preserving map f QO — M, where
M = My (E,, E,) denotes the function-space bundle. To see this we note
that f determines a pointed G-map F: 4, X G - A,, where

F(x,9) = f(xg) (xed,geG).

Hence P, f: E; X Q — E, is defined and we take f to be the adjoint.
We have X = S" so that the evaluation fibrations can be modified as
in §6. Clearly

(7.3) I'o(f)ok ~10Q"(f)
as shown below, Where k is defined by subtracting the cross-section ¢’

and / by subtracting f o e 4.
2"(G) — To(Q)
| ro (/)
&Ny r(f(M)
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Hence we obtain a commutative diagram as follows, relating the modified
exact sequences for Q and M.

nll (G) o

- R(F(Q))

\ b
(N) — =n(I'(M))

T

n

Recall that & is the obstruction to extending A to a vertical homotopy
of ¢’ . into c’# Hence f,6 is the obstruction to extending f o A to a vertical

homotopy of f oe 5 into f oc G Hence it follows as explained in the pre-

vious section, that f o e’ 4 and f o ¢’ are vertically homotopic if and only if
6 € D, (N). Finally we use the correspondence between ex-maps and cross-
sections to obtain (7.2) as stated.

8. EXAMPLES

Let X be a finite sirﬁply-connected complex and let P be a principal
SO (m)-bundle over X. Consider the antipodal self-map a of S™~!. The

unreduced suspension a is a pointed SO (m)-map of S™ into itself. Hence

A

Pais an ex-map of E = P,S™ into itself; let o € ny (E, E) denote the ex-

A

homotopy class. Since a is of degree (—1)" we can apply (5.3) and obtain
that ‘

(8.1) 2'¥,0 = 2" (m even) ,

where r = reg (X). It follows at once that

(8.2) 2" iy, 155] = 0 (m even)
by (2.1) and (3.1), and hence from (3.3) that
(8.3) [tse, (155, 15]] = 0 (m even) .

Here 1;; denotes the ex-homotopy class of the identity on YE. Similar
results, but under more restrictive conditions, have been obtained by
Eggar [4]. Tt can also be shown that the quadruple Whitehead products

[[lZEa \le:|7 L3k, ’,YE]]: [’ZEa [lea 13k, 72E]]]

are trivial, whether m is even or odd.
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In particular, let X be a sphere. For m even (8.1) shows that 2%.0
= 2 and (8.2) that 4 [iy; 1,5] = 0. However, more precise results can be
obtained by using the methods of §7, as follows. Take X = S"(n > 2)
and let 0 e n,_, SO (m) be the classifying element of P. We apply (7.2)
with /= 1 and, using (6.4), obtain

THEOREM (8.4). Let m be even. Then X.c = 1 if and only if X.JFO
is contained in the image of

D:nnl+2(S"’+1) = Tptm+1 (SmH) >
where
Do = Z_*JQOZ';_ICL —a0XiJ0.

In the stable range, where m > n, the homomorphism D is trivial and
FB = 0 cn, asin §6 of [6], where  generates the 1-stem. In this range it
does not matter whether we deal with ex-maps or over-maps, and so (8.4)
agrees with (4.5) of [8].

Now let 1,, denote the pointed SO (m)-homotopy class of the identity
on S™, so that 1y = P,2,1,. Represent the Whitehead square

w (Zsm) = [Z;}:lma Z*lm]

by a pointed SO (m)-map f:2Z (S"AS™) - 2S™. Then P, [ represents
the Whitehead square

w(ZE) = Pyw(ZS™) = [y, lsg] -
We apply (7.2) again and, using (6.2)-(6.4), obtain

THEOREM (8.5). Let m be even. Then 2w (XE) = 0 if and only if
W,y O XY YIFQ lies in the image of

D: 7t2m+2 (Sm+1) — 7-l"n+2m+1 (Sm+1,) i
where Do = o O Z'Z”J@ — 22%J0 o 2% o,

Here w,,.{ € Ty,41 (S™F 1) denotes the ordinary Whitehead square of
the generator of 7, ; (S™"!). Unless m = 2 or 6 we have w,,; # 0 and
(8.5) determines the order of w (2E). Whenm = 2 or 6 it would be interesting
to know when w (XE) = 0, i.e. when 2E is a Hopf ex-space, but unfortun-
ately our method does not apply.

For some examples where the order of w (2E) is (precisely) 4, consider
the transgression 4:7,(S™) — n,_; SO (m) in the homotopy exact
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sequence of the standard fibration of SO (m+1). Take 0 = A¢, where
peX.m,_(S™ ). Then X£,J0 = 0 and so D is trivial. However it follows
from (4.1) and (6.3) of [6] that

Z*JFQ = [Z*lm:z*qb] *

This Whitehead product is non-zero if, for example, m = n and ¢ = 1,
with m # 2, 6. Of course E is trivial as a bundle, in these examples, although
not as a sectioned bundle.
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