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The lemma is proved.

§ 4. The proof of the theorem

We denote by F a countable set, everywhere dense in C («/"). We choose e

satisfying the condition of lemma 3.3.1 and consider Qfk(fke F)
corresponding to this 8 and the collection Xp mentioned in the theorem. The sets

{ Qfk } are open and by lemma 3.3.1 they are everywhere dense in $2n+1.

Consequently, according to the definition, almost every element of <P2n+i

belongs to n Qfk.
fkeF

We fix a collection { cpu (p2n + i } e and a function fe C (Jn)
and show that the desired representation of/ takes place. If/= 0 then as

the function g we can take g 0. We will assume below that/ # 0. According

to the definition of Qfk there exists for any fk e F a function hk such that
2/1 + 1/1

I fk - Z hk(Z Xp<Pq(+>))I < 0 ~£) II fk!•The set F is everywhere dense
q=1 p=l

in C (</"). Consequently for any fe C (J>n) (/# 0) there exists h y(f)
such that :

I/ - Z A z IpViiXp)) < (1 ~ f) 11/11 •

« i p=i \ V ;•

We define the sequence of functions Xo> Xi> /C2> ••• by the recurrent jj

equalities
2/1 + 1 it Ij

Xo=/ Zfc+1 Xk - Z Z ^,0+))' j

oo ^ 1^ 1 |:

where gk y (Xk)- The series g/{ converges uniformly and consequently
oo k 0

the function g ^ is continuous and
fc=0

2/1+1 n

f - Z »( Z V30+)) o.
4 1 // 1

The theorem is proved.
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