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This proves the lemma.

§ 3. Deletion of dependent terms

On a bounded closed set D we consider the space of linear superpositions
m

of the form £ pk (x, y) fk (q (x, y)), (x, y) e D. Here the functions
k= 1

{ Pk (x> T) } and P (x> T) are continuous and fixed, and { fk (t) } are arbitrary
continuous functions of one variable. We assume that the function q (x, y)
is such that for any sequence tn e q (D) -+ t e q (D) we have p [e (<q, /„)
n D, e (q, t) n T>] -> 0. We put

m

X(t,D,q,pu...,pJinf sup | Z c*P*(x> P) |
>

{V/c} (x,y) ee (q,t)nD k l
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where inf is taken over all sets of numbers { ck } for which max | ck | 1.

k

The function X (t, D, q, { pk}), as a function of t, is defined only on the set

q(D).

Lemma 4.3.1. The function X(t9 D, cp { pk }) depends continuously

on t.
m

Proof. The linear combinations £ ckpk (x, y) for all possible systems
k= i

of numbers { ck } for which max | ck | <1, form an equicontinuous set
k

of functions, considered on the bounded closed set D. Consequently, for
any s > 0 there is a ô > 0 such that if | tx — t2 | < S, then

m m

I sup I E ckpk(x,y)\- sup I X v) || < e

(x, y) ee(q.ti) k l (x, y) e e (q,t2) fc==1

simultaneously for all systems of numbers { ck } such that max |

k

For definiteness, suppose that X (t2, 29, q, {Pk}) > À Ci, D, q, pk }).
m

Since the expression sup | £ ckpk (x, y) | depends continuously
(x.y)ee(qJi) k 1

on the coefficients { ck }, there exists a system of numbers { c\ } such that
max I c\ I 1 and

Since

we have

À (tx, D, q,{ pk}) sup I X Vk (x, y) I
•

{x.y)ee(q,t i) k 1

X{t2,D,q, {pk})< sup j X
(x.y) ee(q,t2) k - 1

0 < X(t2)-X{tJ < sup I X I

ix,y)ee(q,t2) k- 1

m

sup IX clkPk(x,y)I< £.
(x,y) ee(q.ti) k 1

This proves the lemma.

Lemma 4.3.2. The function X (t, D, q, { pk }) depends continuously
on D in the sense that there exists a function p (a) -> 0 as s -+ 0, having the
property : if the set DE c D is such that, for any t, DEn e (q, t) forms an
e-net in the set e (q, t) n D, then
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max \ X(t,D,q,{pk}) - X(t,De,q,{pk}) \ < p(e)
teq(D)

n

Proof. Using the equicontinuity of the set of functions ck pk (x, y)
k=l

where max | ck | < 1, we conclude that there exists a function ju (s) -» 0
k

as e -> 0 such that the inequality
m m

0 < sup I y ckpk (x,y)I- sup y | < e)
(x, y) ee (q,t)n D k~ 1 (x,y) ee (q,t) n De /c 1

uniformly over all t e q (D) and over all systems of numbers { ck} for
which max | ck | <1. For any s > 0 there exists a system of numbers

k

{ c\ } such that max \ cEk\ 1 and
k

m

X(t,De,q,{pk})sup I Y. ckPk(x,y)\.
(x,y) ee(q,t)nDe k= 1

Since for any e
m

Ä(t,D,q,{pk})<sup I X |

O, y) ee (q,t)nD k~ 1

and, on the other hand, X (t, 7), <7, {pk }) > 2 (/, Z)£, #, { pk }) (we recall
that 7)e c= D), we have

m

0 < A (t, D, q,{pk}) — A t,De,q,{Pk})<sup| X cekpk (x, y) \

(x, y) ee (q,t) r\D k - 1

m

sup | X I <
(x,y) ee(q,t)nDe k= 1

This proves the lemma.

Lemma 4.3.3. Let F be a closed set on the t-axis ; F c q (D). For

every t e F, suppose that there exists one and only one system of numbers
m

{ Ck } (max I Ck I 1) such that £ Ckpk (x, y) =s£ 0 on the set e (q, t) n 7).
fc /c= 1

77^ each of the functions { Ck(t)} depends continuously on t on the

set F.

Proof Suppose that tne F, t e F and tn t. We put lim Ck (t„) Ck

x m « oo

and lim Ck (t„)Ck.SinceX Ck it,,) pk (x, y) ss 0 on the set e (q, t„) n D
n -> oo ft— I

m ^
and p [e (<q, t) n D, e (q, t„) n 7)] -> 0 as « oo, we have £ Ckpk (x, y)

/c= 1
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0 Z Ckpk {x,y)onthe set e (q,t)n D. Consequently, by the condi-

lc= 1 ~
tion of the lemma, Ck Ck Ck (t). This proves the lemma.

Lemma 4.3.4. Suppose that X (t, D, q, { pk }) =e 0 on some non-empty

portion S of the set q (D). Then there is a non-empty portion (5* c ö and

an index I such that for any continuous functions {fk(t)} there are
continuous functions {f* (t) } such that

m

Z f* (q(x> ^)) Pk (x> y)Z (*> Pk (x, y)
k±l k=\

on the set q~{ (<$*) n D.
We recall that a portion <5 of a set E is that part of it which lies in the

interval S.

Proof We prove the lemma by induction on m. For m 1 the assertion

of the lemma is obvious. We denote by ôk the set of all points t of the

portion <5 for which X (t, D, q, pu pk-l9 pk+i, pm) 0. By Lemma
4.3.1, the set is closed. Two cases are possible.

1) For some k the set ôk contains a non-empty portion ô'k of the set

q(D). Since X(t, D,q,pu pk_u pk + 1, J 0 for every t e ôk, then

by the inductive hypothesis there is a non-empty portion <5* ci ôk and an
index / ^ k such that for any continuous functions ft (t), ...9fk- l (t),
fk+i (0> •••>/,. (0 there are continuous functions f* i (0»/*+i
(0, -,fm(0such that

Z fi (q A- y))Pi(x> y)Z / * y)) (x< y)
i rk i^k,l

on the set c/~x (<5*) n D. Putting/ k (t) fk (t), we obtain
m

Z fi(q(x>30) Pi(x, y)Z / * 30) pt O,
i— L i ^I

So in case 1) the lemma is proved.

2) None of the sets 5k contains non-empty portions of the set q (D),
m

that is, u 3k is nowhere dense in q (D). Therefore there exists a non-
* 1

m

empty portion S* c <5\ u 5k.SinceÀ D, { }) 0 on Ô*, for every
k= 1

m

te,5* there are numbers { Ck(t)}(max | Ck | 1) such that Z Ck
k k= 1
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(q (x, y)) pk (x, y) 0 on e (q, t) n D. If we had Ck (t) 0 for some k,
then it would turn out that t e Sk. Consequently, Ck (t) A 0 for any h. We
show that for every t e ö* the numbers { Ck (t)} are uniquely determined.
Assume the contrary. Then there are numbers { Ck (t) } (max | Ck (t) | 1)

m

such that Yj C'k (<7 (-L >')) Pk (*> y) 0 on e (q,t) r\ D and Ck A Ck
k= i

for some k. Then

Z [Ck(t)C'l(0 - Ck(t) C1(t)]pk(x,E
k±1 h*l

on e (q, t) n D and in addition, C"k A 0 for some k. Consequently, teöv
So we have obtained a contradiction, and the uniqueness of the choice of the
numbers Ck (t) is proved. Further, we may regard { Ck (t)} as single-valued
functions of t on the portion ô*. By Lemma 4.3.3, the functions Ck (t)
are continuous and, as noted above, Ck (t) A 0 for any t e <5*. Then

Pi(x, y)— I - ~fffpk(x,y), (x,y)
ft — 2 Cl(g(x,y))

C (t) m

Putting/ (t)fk - y~ fi (t),te <5*, we have £/ * (g y))pk (x,
LltC

L Jk (<]ïPk(x,y)- E „ - y)
ft. i ft= 2 t ; ('/)

m

Z fk(l)Pk (x,y)+ A (g) Pi (x,
k — 2

m

Z fk (<î (*> y)) Pk (x, y), (x, y) e g "1 (<5*) n
k= 1

This proves the lemma.

§ 4. Reduction of linear superpositions to a form
with independent terms

We fix the continuous functions p\ (x, y) and continuously differentiable
functions qt (x, y) (i =0, 1, 2, n; k= 1, 2, > 2, where { qt (x, y) }

satisfy in conditions (1) and (3) of Lemma 4.2.2, and we consider in D
superpositions of the form

n mi

Z Z Pli(x,y)fki(qi(x,yj),
i=0 k=1

where {f\ (t) } are arbitrary continuous functions of one variable.
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