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This proves the lemma.

§ 3. Deletion of dependent terms

On a bounded closed set D we consider the space of linear superpositions

of the form ) p.(x,»)fi(q(x,»), (x,y)e D. Here the functions
k=1

{ pr (x, ) } and ¢ (x, y) are continuous and fixed, and { f; (¢) } are arbitrary
continuous functions of one variable. We assume that the function g (x, y)
is such that for any sequence t,e¢q (D) — teq (D) we have p[e(q,t,)
N D,e(q,t)n D] - 0. We put

/,{(tpquﬂpl""vpm) = inf sup l Z Ckpk(xﬁy),D

{ck} (x,y)ee(q,t)nD k=1
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where inf is taken over all sets of numbers { ¢, } for which max | ¢, | = 1.
k

The function A (¢, D, g, { p; }), as a function of ¢, is defined only on the set
q (D).

Lemma 4.3.1. The function A (t, D,q,{p.}) depends continuously
on t.

m
Proof. The linear combinations ) ¢ p, (x, y) for all possible systems
k=1
of numbers { ¢, } for which max | ck| < 1, form an equicontinuous set
k

of functions, considered on the bounded closed set D. Consequently, for
any ¢ > 0 there is a 6 > 0 such that if | 7, — 7, | < J, then

m m

| s [ Yan|- s | antnn] <

(x,v)ee(q,t1) k (x,¥)ee(q,t2) k=1

simultaneously for all systems of numbers { ¢, } such that max { € f < 1.
k

For definiteness, suppose that A(¢,, D,q, {p.}) = A(ty, D, g, {pi}).

m

Since the expression sup | Y cwpr (X, y)[ depends continuously
(x,y)ee(q,t1) k=1
on the coefficients { ¢, }, there exists a system of numbers { ci} such that

max | ¢ | = I and
. .

m

/l(t’laDaqa{pk}) == Sup l Z Clipk(xay)l'
(x.y)ee(q,t1) k=1
Since
}“(tZDDa Q>{pk }) < sup , Z C’Isl'pk (X, y) ’
(x.y)yee(q,t9) k=1
we have

m

0<2(t) = A(t) <  sup | Y elp(x,))]

(x.y)ee(q,t9) k=1

— sup | Zl c:,ﬁpk (x,y) ] < €.

(x,y)ee(q.t1]) k=

This proves the lemma.

LEMMA 4.3.2. The function 1 (t, D, q, { p: })  depends continuously
on D in the sense that there exists a function u(g) - 0 as ¢ — 0, having the
property : if the set D, = D is such that, for any t, D, e(q,t) forms an
e-net in the set e (q,t) n D, then
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max | 1(t, D¢, {p}) = 2(, Dy g, {pe}) | << () -

teq(D) ‘
n
Proof. Using the equicontinuity of the set of functions Y, ¢, p, (x, )
K=1
where max | ¢, | << 1, we conclude that there exists a function u(g) — 0
k

as ¢ — 0 such that the inequality

0-< sup I Z CkPk(XaJ/)' - sup I Z by (X, J’)! Zu(e). r

(x.y)ee(qg,t)nD k=1 (x,y)ee(q,t)nDg k=

uniformly over all te€ ¢ (D) and over all systems of numbers {¢,} for
which max l c,cl < 1. For any ¢ > 0 there exists a system of numbers
k ,

{ ¢; } such that max | ¢;| = 1 and
k

AMt, D, q,{p}) = sup | Z cepr (x, ) |-

(x,y)ee(q,t)nDg k=
Since for any ¢

l(taDaqa{pk}) {:; sup ! Z Clipk(xny)!

(x,y)ee(q,t)nD k=1

and, on the other hand, A (¢, D,q, {p,}) = A(t, D,, q, { p }) (we recall
that D, < D), we have

O‘{;}'(z’:Daqa{pk})_i(taDaaqa{pk})< sup ! chipk(xay)l

(x,y)ee(g,t)nD k=1

- sup | Y an(ny)| <ule).

(x,y)ee(q,t)nDg k=1

This proves the lemma.

LEMMA 4.3.3. Let F be a closed set on the t-axis, F < q (D). For
every te F, suppose that there exists one and only one system of numbers

{ Ce ) (max | C|=1) suchthat Y, Cyp,(x,y)=0 ontheset e(q, )N D.
k k=1 :

Then each of the functions { C,(t)} depends continuously on t on the
set F.

Proof. Suppose that 7, € F te Fand ¢, — t. We put lim C.(t) = Cy

n—oo

and lim C, (¢,) = Ck Since Z C,(t)p.(x,y)=0onthesete(q,t,)n D

and ple(q,t)n D,e(q,t,)n D] - 0 as n — o0, we have Z Ckpk (x, ¥)

k=1
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m ~

= Y Cypx(x,p) on the set e (g, 1) N D. Consequently, by the condi-

k_1
tion of the lemma, C,\ = Ck = (, (¢). This proves the lemma.

LEMMA 4.3.4. Suppose that 1(t, D, q, { py }) =0 on some non-empty
portion & of the set q (D). Then there is a non-empty portion 6* < ¢ and
an index | such that for any continuous functions {f.(t)} there are con-
tinuous functions {fy (t)} such that

m

Y L@ ) ey = Y fild () pe(x, )
k+1 k=1
on the set q~' (6%) N D.

We recall that a portion § of a set E is that part of it which lies in the
interval 0.

Proof. We prove the lemma by induction on m. For m = 1 the asser-
tion of the lemma is obvious. We denote by 0, the set of all points ¢ of the
portion o for which A(z, D, g, pys «os Pk—1s Pk 15 - Pm) = 0. By Lemma
4.3.1, the set is closed. Two cases are possible.

1) For some k the set §, contains a non-empty portion &, of the set
q (D). Since A (1, D, @, Pyy oo Puc s Prs 15 s D) = 0 for every ted,, then
by the inductive hypothesis there is a non-empty portion §* < §, and an
index / # k such that for any continuous functions f; (¢), ..., fi— (£),
Jis1 (O, ooy £y (t) there are continuous functions f 5 (¢), ..., fr—1 (), f i1
(t), ..., f o (¢) such that

Y filaxo ) pix,y) = 3 5 (g (x,0) pi(x, y)

i#k i#k,l

on the set ¢ ' (6%) n D. Putting £ () = f, (t), we obtain

fila G, ) pi(x, ) = Y fi(ax,»))pi(x,p).

i #1

—_1

i:

So in case 1) the lemma is proved.

2) None of the sets ¢, contains non-empty portions of the set g (D),

m

that i1s, U ¢, is nowhere dense in ¢ (D). Therefore there exists a non-
k=1
empty portion 6* = &\ U d,. Since A(t, D, ¢, { p, }) = 0 on &%, for every
k=1
t € 0* there are numbers { C, (1) } (max|C,(r)| = 1) such that Y C,
k

k=1




e
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(g (x, ) pi(x,y)=0 on e(g,t) n D. If we had C,(¢) = 0 for some &,
then it would turn out that ¢ € §,. Consequently, C, (¢) # 0 for any k. We
show that for every t € 0* the numbers { C, (¢) } are uniquely determined.
Assume the contrary. Then there are numbers { Cy (1) } (max ] C, (¢) l= 1)

such that Y G (g (x, V) (x, ) =0 on e(q,t)n D and C, # C,
k_1

for some k. Then

Y [C) CLt) = Ce) CL (] pe(x,) = Y Colt) pi(x, y) = 0

k#1 k#1

on e (g, t)’n D and in addition, C, # 0 for some k. Consequently, t € ;.
So we have obtained a contradiction, and the uniqueness of the choice of the
numbers C, (¢) is proved. Further, we may regard { C, (¢) } as single-valued
functions of ¢t on the portion 6*. By Lemma 4.3.3, the functions C, (¢)
are continuous and, as noted above, C, (t) # O for any ¢ € 6*. Then

py(x,y) = _Z —hgc%yg pe(x, ), (x,))eq™ " (6¥)nD.
. Cy (1) . -
Putting f (1) = /i (1) — - (t)fl (1), € 6%, we have 3 £ (q (x, ) pi(x, )
- =z Ck
= ka((ﬂpk(x,y) - Z . EZ; pi (x, )

|
i

= k;fk (@) pr(x, ¥) + f1(q) py (x, p)

l

S (@) pe(x,y), (x, ) eq (8% D.

k=1

This proves the lemma.

§ 4. Reduction of linear superpositions to a form
with independent terms

We fix the continuous functions pf (x, ») and continuously differentiable
functions ¢; (x, y) (1=0,1,2, ..., n; k=1, 2, ..., m;) n > 2, where { g; (x, y) }
satisfy in D conditions (1) and (3) of Lemma 4.2.2, and we consider in D
superpositions of the form

YOS A0S (4 xs 09)

i=0 k=1

where { 1% (¢) } are arbitrary continuous functions of one variable.
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