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Preface

By means of an algebraic substitution, the so-called Tschirnhaus
transformation, the general algebraic equation of the n-th degree x11 + axxn~l
+ a2 xn~2 + + an_1 x + an 0 may be reduced to the form yn
+ b±yn~4 + b5yn~5 + + bn-1y +1=0. Further attempts by
algebraists to reduce the solution of the general algebraic equation to the
solution of equations containing a smaller number of parameters remained
unsuccessful for a long time (the problem of resolvents).

In his famous Mathematical Problems [1] Hilbert looked at this problem
in a new way, formulating it as No. 13 in the following form: the impossibility

of solving the general equation of the 7-th degree by means of functions

of only two variables. To prove this Hilbert regarded it as possible to
show that the equation of the 7-th degree /7 + x/3+je/2 + z/+1 0

is not soluble by means of any continuous functions of only two variables.
Various mathematicians have understood the 13-th Problem differently

and have attributed to it results of a different character.

Hilbert [3] found an algebraic substitution reducing the solution of the

general algebraic equation of the 9-th degree to the solution of equations with
4 parameters. Hilbert proved also the existence of analytic functions of
three variables not representable by superpositions of functions of only
two variables. Ostrowski [2] constructed an analytic function of two variables

not representable as a superposition of infinitely differentiable functions

of one variable and arithmetic operations. The author [4] proved the
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existence of smooth functions of several variables not representable by

superpositions of smooth functions of a smaller number of variables.

Bieberbach [5] attempted to prove that there exist continuous functions

of three variables, not representable as a superposition of continuous functions

of two variables. Not for nothing did Bieberbach call the 13-th Problem

"unfortunate" (see [6]). Many years later, by the combined efforts of
Kolmogorov [7], [9] and Arnol'd [8], the opposite was proved. So Hilbert's
conjecture was shown to be false. By Kolmogorov's theorem any
continuous function of several variables can be represented by means ofa superposition

of continuous functions of a single variable and the operation of addition.
Hilbert's 13-th problem gave rise to a great number of investigations

in algebra and analysis, but the kernel of the problem never the less remains
untouched. In this connection Lorentz [12] made an expressive analogy.
The example of Peano of a mapping of an interval onto a square does not
answer the question about the difference between an interval and a square.
In the same way the theorem of Kolmogorov does not close the 13-th

problem, but only makes it more interesting. It is known, for example, that
superpositions of Kolmogorov's type, composed of smooth functions, do
not even represent all analytic functions [48].

Thus, Hilbert's idea of proving the impossibility of solving the general
equation of the 7-th degree by means of functions of only two variables
can be developed in a more positive way. Results available at present do not
contradict, for example, the possibility that the function /(x, y, z) defined
by the equation f1 + x/3 + yf2 + zf + 1 eee 0 is not a finite superposition
of analytic functions of two variables. On the other hand nobody has

disproved that any algebraic function is a superposition of algebraic functions

of a single variable and arithmetic operations.
This paper is a summary of the lectures given at the University of

California in Los Angeles in April-May of 1977. Chapter I presents a survey of
results, the remaining chapters are devoted to proofs.

Chapter 1. — Survey of results

The survey presented is based on the surveys [10]-[12], [33]-[35]. It also
covers recent results:

Definition. We will say that a function / /(xl3 x„) is a
superposition of the functions
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