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1. A BASIC LEMMA

One learns that the essential step in constructing an estimate for the
number of zeros of a function in a given disc consists of obtaining an upper
bound for a ratio

(1) \F|s,/\F|s,where S* > S > 0, and, if the given disc has centre z0, then | jp |Ä

max I F (z) |. We see that this is sufficient by virtue of the following
|Z-Z0|=Ä

lemma, (see Waldschmidt [36], p. 166, for a slightly weaker statement).

Lemma 1. Let S*, S, R be real numbers satisfying

S* > S > 0 and S* > R > 0.

Let F be a function holomorphic in some open set containing the disc
I z — z0 I < S*. If F does not vanish identically in the disc \z — z0\ < S*
then the number of zeros n (F, R, z0) of F in the disc | z — z0 | < R

satisfies

(S*2 + SR\ I F U
(2) n (F, R, z0) Log < Log

1

_
[s

S*(S+R)J IF

Proof There is no loss of generality in supposing for convenience that
z0 0. Suppose then that F has zeros at z1? zn in the disc | z | < R
and write

«w-'wn
Then G is holomorphic in an open set containing the disc | z | < S*9

a simple calculation confirms that

I G Is. \F\S.,

and, by the maximum-modulus principle,

I G \s < I G 15*

However
S*2 - Sei0 zh

G\s> \ F Is Th. min
S* (Seie — zh)
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Each factor in the product on the right is the square root of an expression

of the shape

(3) (S*4 - 2 SRhS*2cosxjj + S2Rl)jS*2 (S2 - 2 cos +

where zh R,/'1'1' and \j/ 6 - (j),r One sees that the turning points of
(3) as a function of i// occur when sin t// 0 and that the minimal value

of (3) is

(4) S*2+SRh)IS*(S+Rh))2

One easily confirms that (4) is minimal for 0 < Rh < R when Rh R,
whence we obtain

the extreme case. I am indebted to Michel Waldschmidt for mentioning
the result of the lemma to me. The lemma improves upon a similar result
obtainable via Jensen's theorem, (see, for example, Tijdeman [26], p. 3).

According to the above observations, our principal attention below is

directed towards the finding of upper bounds for ratios of the shape (1).

Although the principles of our techniques are not new, many of the details
have been little more than folklore and are presented here explicitly for
the first time.

The following lemma is presented in somewhat exaggerated generality.
Its implications will become clear when below we come to look at specific
examples.

Lemma 2. Let S*, S be real numbers satisfying S* > S > 0 and
let G be a function of the shape

bl9 ba complex constants, where gu ga are functions holomorphic
in some open set containing the disc | z — z0 I < 5*. Further let z1?
be points in the disc | z — z0 | < S and let tx, tQ be non-negative integers,

and the assertion of the lemma follows.

The lemma is " best possible " ; the function F (z)

2. A USEFUL IDENTITY

G(z) Y*-ih9k(z)>
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