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Given a representation 0: SO (m) -» SO (q) write

J$ J 0^:7zrSO(m) -> nr+q (Sq),

where J denotes the usual Hopf-Whitehead homomorphism. For example,
if q > m and <A is the inclusion then

(6.2) j, (-1
by (3.2) of [5] (cf. [8]). If q 2m and (j) =- 1 © 1 it is easily seen that

(6.3) Jt 2(-lniJ.
Consider the function-space N N (Sp, Sq) of pointed maps Sp

-> Sq. We identify n^N) (i 0, 1, with ni + p(Sq) in the standard way
(see [15]). Let G be a topological group and let

4>: G SO(p), (A: G - 50 (^)

be representations of G. We regard 5g as pointed G-spaces using 4>,

iA, respectively. Choose a principal G-bundle F over 5" with classifying
element 0 e nn_x (G), and take E1 P#(SP), E2 P#(Sq). Then the

operator D in our exact sequence is given

(6.4) Da a o Zr+P~q+1 J^O - Jß o a

where aE7ir+p+1 (5^). The case r 1 of this result will be needed in §8

below.

7. The adjoint G-bundle

Let X be any space and let F be a principal G-bundle over X. We regard P
as a (right) G-space in the usual way. By a principal automorphism we mean

an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle

we mean the sectioned bundle Q P#G, where G acts on itself by conjugation.

Note that g is a group ex-space since G is a group G-space. We can

construct Q from G x P by identifying

(7.1) (gag'1, ft) ~ (a,bg) (aeG,beP)

for all g eG. The group ex-structure is given by

{ al,b}• { a2,b}{ ax}

where { } denotes the equivalence class of Every principal
automorphism / of P determines a cross-section f':X-+ Q as follows.



Given xe X choose any b ePx; thenfb bg, for some g e G, and we define

fx { g, b). This correspondence establishes an isomorphism between

the group of principal automorphisms of P and the group of cross-sections

of Q.

Any element c of the centre of G determines a G-map c# for any G-

space A. Notice that c# is a principal automorphism in the case of P and
that the corresponding cross-section cX of Q is given by c'# { b } { c, b}.
When A is a sphere these central cross-sections of Q can be analysed as

follows.
Take X Sn (n > 2), so that P is a principal G-bundle over Sn. Let

B" denote the «-ball with boundary Sn~1-. Choose a relative homeomorphism
(B", S"-1) -> (Sn, x0) and lift this to a map k: (Bn, Sn~ *) -> (P, G). The

homotopy class 0 e ntl_1 (G) of I k\Sn~x classifies the bundle according
to clutching theory.

Let c e G be central and let X : I -> G be a path such that A (0) e,
A (1) c. Consider the map A: Bn x / ~> Q which is given by

^1 CM) { A (ï), /c (_>;)}

The boundary of B" x Iis the sphereB"x0 u S"'1x x 1

and Amaps 5"_1 x / into GQbyA(y,t)(ly).(h)
using (7.1). Let us compare this with the map of the boundary which
agrees with Aon Bnxj but is given on S"-1 x /by (j, Xt. Now X

can be regarded as a vertical homotopy of e'# into c'# over { x0 } and A
represents the obstruction

S ô(e'#,c'#; (G)

to extending this vertical homotopy over S". Since A |(£"x/)- is nul-

homotopic, however, it follows that Ô is also represented by T5""1 ->
where

d(y,t) (ly).(Xt)
For example, take GSO(m),with m even. Take and

X(t)— e cos nt+ bsinnt (O^f^l),
where b denotes the matrix

L'Enseignement inathém., t. XXTII, fasc. 3-4. 16
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0 1\ / 0 1\
© © (m/2 summands).

1 0/ \-l 0/

Then ô F0, by definition, where

F: 7zn_1 SO (m) -> 71^50 (m)

denotes the Bott suspension, as in [6].

Now let Ai(i= 1,2) be a locally compact pointed (/-space and write
Et P#At. Recall that N N (A1, A2) denotes the function-space of
pointed maps Ax -> A2. Given a pointed G-map / : Ax -» A2 we can
construct an ex-map P#f:E1-~+E2 and a pointed G-map J:G->N,
where f (g) g# of /o I assert

Proposition (7.2). The ex-maps

P#f ° P#c: Ei -+E2

are ex-homotopic if and only if

f *ô e Dn1 (N) cznn(N),
where ô is as above.

Here D is the operator which occurs in the modified exact sequence of the

evaluation fibration derived from the function-space bundle, as in §6. The

proof of (7.2) is by naturality, as follows. A

First observe that / extends to a fibre-preserving map / : Q -» M, where

M MX(EU E2) denotes the function-space bundle. To see this we note

that/determines a pointed G-map F: Ax x G -> T2, where

F(x,g) — f (xg) (xeAugeG).
A

Hence P#f : E1 x g -> F2 is defined and we take / to be the adjoint.
We have X Sn so that the evaluation fibrations can be modified as

in §6. Clearly

(7.3) r0 (/) o k I o or (/)
as shown below, where k is defined by subtracting the cross-section e'#

A
and / by subtracting / 0 e'#.

ß"(G) —- r0(ß)

ß"(/) r0(/)
ß"(JV) —r" r0(M)
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Hence we obtain a commutative diagram as follows, relating the modified

exact sequences for Q and M.

* n{r(Q))

(r(7))*
t

re (r(M))

n„(G)

f,
(N)

Recall that Ô is the obstruction to extending A to a vertical homotopy
of e'# into c'Hence /#<5 is the obstruction to extending / o to a vertical

A A

homotopy of/ o e' # into foe'#. Hence it follows, as explained in the pre-
A A

vious section, that foe'# and foe'# are vertically homotopic if and only if
<5 g Dn1 (N). Finally we use the correspondence between ex-maps and cross-
sections to obtain (7.2) as stated.

8. Examples

Let X be a finite simply-connected complex and let P be a principal
SO (m)-bundle over X. Consider the antipodal self-map a of Sm~1. The

A
unreduced suspension a is a pointed SO (m)-map of Sm into itself. Hence

A
P#a is an ex-map of E P#Sm into itself; let a e nx (E,E) denote the ex-

A

homotopy class. Since a is of degree (- l)m we can apply (5.3) and obtain
that

(8.1) — 2r (m even),

where r reg (X). It follows at once that

(8.2) 2r+1[iIE,iIE] 0 (m even)

by (2.1) and (3.1), and hence from (3.3) that

(8.3) ~ 0 (m even)

Here iIE denotes the ex-homotopy class of the identity on IE. Similar
results, but under more restrictive conditions, have been obtained by
Eggar [4]. It can also be shown that the quadruple Whitehead products

[[*!£> 1IE]i llZE> Ï«]], \_lSE> [}lEi 7£E]]]

are trivial, whether m is even or odd.


	7. The adjoint G-bundle

