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Given a representation ¢: SO (m) — SO (g) write
Jo = J o, n,SO(m) - m,., (SS9,

where J denotes the usual Hopf-Whitehead homomorphism. For example,
if ¢ > m and ¢ is the inclusion then

(6.2) | J, = (=1m-agn-ay,
by (3.2) of [5] (cf. [8]). If ¢ = 2mand ¢ = | @ 1 it is easily seen that
(6.3) Jy =2(=1"zmJ.

Consider the function-space N = N (S?, S%) of pointed maps S?
— SS9 We identify n;(N) (i=0, 1, ...) with n;; ,(S?) in the standard way
(see [15]). Let G be a topological group and let

¢:G —SO(p), Y:G - SO (q)

be representations of G. We regard S?, S? as pointed G-spaces using ¢,
Y, respectively. Choose a principal G-bundle P over S" with classifying
element O emn,_; (G), and take E; = P, (S?), E, = P, (S%. Then the
operator D in our exact sequence is given

(6.4) Do = oo Zr*+P—q+1 Jl]lg _ J¢0 o Zr;:rp—q_l %,

where aen, ;4 (S9. The case r = 1 of this result will be needed in §8
below.

7. THE ADJOINT G-BUNDLE

Let X be any space and let P be a principal G-bundle over X. We regard P
as a (right) G-space in the usual way. By a principal automorphism we mean
an equivariant fibre-preserving map of P into itself. By the adjoint G-bundle
we mean the sectioned bundle Q = PG, where G acts on itself by conjuga-
tion. Note that Q is a group ex-space since G is a group G-space. We can
construct Q from G %X P by identifying

(7.1) (gag™',b) ~ (a,bg)  (aeG, beP)
for all g € G. The group ex-structure is given by
{a,b}-{ayb} ={a - a,,b} (a;,a,€0),

where { , } denotes the equivalence class of ( , ). Every principal
automorphism f of P determines a cross-section f': X — Q as follows.
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Given x € X choose any b € P ; then fb = bg, for some g € G, and we define
f'x = {g,b}. This correspondence establishes an isomorphism between
the group of principal automorphisms of P and the group of cross-sections
of Q.

Any element ¢ of the centre of G determines a G-map c, for any G-
space A. Notice that ¢, is a principal automorphism in the case of P and
that the corresponding cross-section ¢’ , of Qis givenby ¢’ {b} = {¢,b }.
When X is a sphere these central cross-sections of Q can be analysed as
follows.

Take X = S"(n > 2), so that P is a principal G-bundle over S”. Let
B" denote the n-ball with boundary S”~*. Choose a relative homeomorphism
(B", S"™1) — (S", x,) and lift this to a map k:(B", S"~!) » (P, G). The
homotopy class 6 € m,_, (G) of I = k|S"~! classifies the bundle according

to clutching theory.
Let ¢ e G be central and let A: I — G be a path such that 1(0) = e,
/. (1) = c. Consider the map A: B" X I — Q which is given by

Ay, t) = {A@), k(y)} (veB" tel).
The boundary of B” x [ is the sphere
B"x0uS""!'xTuB"x 1,
and A maps S"~! x I'into G = Q by
Ay, t) = (y).(A).(y)~",

~using (7.1). Let us compare this with the map A’ of the boundary which
agrees with A on B" x  but is given on S"~! x I'by A’ (y, ) = Ait. Now A
can be regarded as a vertical homotopy of e’ into ¢’ over { x, } and A
represents the obstruction

0 = 06(e'y, ¢y ) em, (G)
to extending this vertical homotopy over S”. Since A | (B"*I)* is nul-

homotopic, however, it follows that ¢ is also represented by d: ES"‘l — @,
where

d(y,1) = (Iy).(At).(Ip)~*.
For example, take G = SO (m), with m even. Take ¢ = —e and
A(t) = ecos mt+b sin it (0<t<),

where b denotes the matrix

L’Enseignement mathém., t. XXIII, fasc. 3-4. 16




234 —

01 01 2 q
(_1 O) @ ... @(_] 0) (m/ summands) .

Then 6 = F0, by definition, where
F:n,_ SO (mj — 71,50 (m)

denotes the Bott suspension, as in [6].

Now let 4;(i=1, 2) be a locally compact pointed G-space and write
E;, = P,4A, Recall that N = N (4,, A,) denotes the function-space of
pointed maps A; — A4,. Given a pointed G-map f:A4, - 4, we can
construct an ex-map Py, f:E, - E, and a pomted G-map f:G - N,

where f(g) = g, 0o f = fo g.. | assert
ProPOSITION (7.2). The ex-maps
Pyf,PypfoPycEy > E,
are ex-homotopic if and only if

f*6eDn, (N) =, (N),
where 6 is as above.

Here D is the operator which occurs in the modified exact sequence of the
evaluation fibration derived from the function-space bundle, as in §6. The
proof of (7.2) is by naturality, as follows.

First observe that fextends to a fibre-preserving map f QO — M, where
M = My (E,, E,) denotes the function-space bundle. To see this we note
that f determines a pointed G-map F: 4, X G - A,, where

F(x,9) = f(xg) (xed,geG).

Hence P, f: E; X Q — E, is defined and we take f to be the adjoint.
We have X = S" so that the evaluation fibrations can be modified as
in §6. Clearly

(7.3) I'o(f)ok ~10Q"(f)
as shown below, Where k is defined by subtracting the cross-section ¢’

and / by subtracting f o e 4.
2"(G) — To(Q)
| ro (/)
&Ny r(f(M)
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Hence we obtain a commutative diagram as follows, relating the modified
exact sequences for Q and M.

nll (G) o

- R(F(Q))

\ b
(N) — =n(I'(M))

T

n

Recall that & is the obstruction to extending A to a vertical homotopy
of ¢’ . into c’# Hence f,6 is the obstruction to extending f o A to a vertical

homotopy of f oe 5 into f oc G Hence it follows as explained in the pre-

vious section, that f o e’ 4 and f o ¢’ are vertically homotopic if and only if
6 € D, (N). Finally we use the correspondence between ex-maps and cross-
sections to obtain (7.2) as stated.

8. EXAMPLES

Let X be a finite sirﬁply-connected complex and let P be a principal
SO (m)-bundle over X. Consider the antipodal self-map a of S™~!. The

unreduced suspension a is a pointed SO (m)-map of S™ into itself. Hence

A

Pais an ex-map of E = P,S™ into itself; let o € ny (E, E) denote the ex-

A

homotopy class. Since a is of degree (—1)" we can apply (5.3) and obtain
that ‘

(8.1) 2'¥,0 = 2" (m even) ,

where r = reg (X). It follows at once that

(8.2) 2" iy, 155] = 0 (m even)
by (2.1) and (3.1), and hence from (3.3) that
(8.3) [tse, (155, 15]] = 0 (m even) .

Here 1;; denotes the ex-homotopy class of the identity on YE. Similar
results, but under more restrictive conditions, have been obtained by
Eggar [4]. Tt can also be shown that the quadruple Whitehead products

[[lZEa \le:|7 L3k, ’,YE]]: [’ZEa [lea 13k, 72E]]]

are trivial, whether m is even or odd.
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