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PROFILS ET RÉDUITE TRANSJORDANIENNE
D'UNE MATRICE CARRÉE

par André Fontaine

I. Itération d'un endomorphisme (singulier)

Rappel. Propriétés classiques des noyaux itérés

En étant un espace vectoriel de dimension finie n sur C, soit g un endomorphisme

de En dans En ; nous le supposons singulier, c'est-à-dire dim Ker (g)

> 1 ; Ker (g) est le sous-espace propre afférent à la valeur propre 2 0

de g.

A) On considère la suite des « noyaux itérés de g » :

(1) Ker (g) Kx Ker (g2) - K2, Ker (,gq) Kq9

On sait que ces noyaux sont emboîtés, Kq a Kq+1. La suite des dimensions
de ces noyaux est croissante:

(2) dx dim(K1) < d2 dim(K2) < < dq dim(Kq) < < n

B) Il existe un unique entier p tel que

di < d2 < < dp dp+1 — dp+2 c'est-à-dire

K,czK2^ c Kp^ a Kp Kp+1 Kp+2

(inclusion au sens strict).

dp d est la « dimension maximum des noyaux itérés » et l'on démontre
que d r, r étant l'ordre de multiplicité de la valeur propre 2 0, c'est-
à-dire l'ordre de multiplicité de la racine X 0 de l'équation caractéristique

de g [cf. par exemple: R. Godement, Cours d'Algèbre, Hermann,
Paris, 1965].

C) On a ainsi les inéquations 0 < p d r n.

p se nommera l'indice de g pour la valeur propre 2 0; c'est le nombre
minimum d'itérations à faire sur g pour que la dimension du noyau de
l'itéré atteigne son maximum d — r.



D) Le profil d'un endomorphisme singulier g est formé des p nombres
{ du d2, dp„ i, dp r }. Cette suite, extraite de (2), est strictement
croissante. Concrètement, on prendra dans un repère orthonormé les points
Mu M2, Mp, Mp+i, ...; le point Mq ayant pour coordonnées xq q
g N, yq dq. On y adjoindra le point MQ (0, 0) qui correspond à g0 e,

endomorphisme identique, d0 0. La ligne brisée de sommets successifs

M0 0, Mu M..., Mp, Mp+1 prendra également le nom de profil
de l'endomorphisme singulier g. A partir du profil de g, on construira la
suite de ses sauts

(3) {<5l5 ô2, ôq, ...} où ôq dq -
(en particulier ôl d1 — d0 dx).

Nous allons établir que cette suite des sauts est décroissante; c'est le

Théorème de la convexité. ôq+1 < ôq.

Soit Sq+1 un sous-espace supplémentaire de Kq sur Kq+V Considérons

l'image g (Sq+1) de Sq+1 par g.

1°) Soit x un vecteur non nul de Sq+ On a gq+l (x) 0 et g" (x) # 0

donc g (x) e Kg et g (x) $ Kq_ u
d'où

(4) flf(S8 + 1) c Kq;î(Sl+ 1)nVi-{ 0}

On déduit de (4)

(5) dimgf(S4+1) < dq - dq_t

2°) Montrons que la restriction de g à Sq+l est injective.

Soit { vl5 v2, va } où a Sq+l dq+1 - dq une base de Sq+1.
Une partie génératrice de g (Sq+1) est L { g (v^, g (v2), g (va) }. Si

l'on montre que L est une partie libre, le résultat proposé sera établi.
Soient oc scalaires pu p2, pa tels que

Pi9(vi) + p2 g (v2) + + (va) 0

On a donc W p1v1 + p2v2 + + p(XvaeK1 et aussi WeKx n Sq+1.
Mais n Sq+% cz Kq n Sq+1 { 0 }, d'où W 0 et p1 p2

pa 0, ce qui établit que I est libre.

Il en résulte

(6) dim g(Sq + 1) dq+
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Rapprochons (5) et (6): dq+1 - dq < dq — dq-1 ou ôq+1 <,ôq, d'où

pour la suite des sauts

5t d± > ô2 > > <5p_i > ôp > 0 8P+1 ôp+l

3°) La ligne brisée profil de g pour A 0 est convexe car ——

> s'écrit pente (M3_ 1 Mq) > pente (Mq, Mq+ J.

II. Analyse d'un endomorphisme /. Théorèmes préliminaires

A) Notations. Soit le polynôme caractéristique de /
P (A) (A, - A)'1 (A2 - A)r2 (A, - A)" [rl+ r2 +... + rs n~\

Le spectre def s'écrit: Al5 Ai A2, A2 As, As

O ^2 ^
liste obtenue en répétant chacune des s valeurs propres distinctes à son ordre
de multiplicité.

Considérons les endomorphismes singuliers gv — f ~ Ave (v 1, 2, .y),

e étant l'endomorphisme identique; gv admet la valeur propre 0, à l'ordre rv.
Pour chaque v, on détermine le profil de gv pour la valeur propre 0, soit
{ dl, d2,..., dpv } où dq dim Ker (gl). Le noyau maximum de gv sera

désigné par Kv [TC^Ker (g^v)]. On a:

C Kl cz Kl cz c= K;v Kv IÇV + 1

di d2 <c dPv dv dPv + 1 —

Inclusions et inéquations au sens strict. On sait que dv rv.
Par définitions;

1°) { dxv, d2, ûÇv } profil de gv pour A 0

profil de/ pour A Av

2°) pv indice de / pour la valeur propre Av.

B) Théorème de la disjonction. Ce théorème classique, dont la démonstration

ne sera pas reproduite, s'exprime par

a^ß=>KanKß { 0}
(voir, par exemple, la référence antérieure).
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C) Etude de l'application gk (/o>l)

1°) L'application gk applique Ka dans Ka. On a vu que ga g\
applique Ka dans Ka, d'où, a fortiori

9a [Ka] Œ K* (Inclusion stricte).

2°) L 'application g\ restreinte à Kß (ß ^ oc) est une bijection de Kß

sur Kß.

a) ga applique Kß dans Kß. Remarquons que gt / — À1e et g2 — f ~ X2e

commutent, donc gk o g22 g22 o g\ (on a pris pour simplifier a 1,

ß 2).

xg K2 => gp22(x) 0 => (^ o #f2) (x) 0 => g\2 \_g\ (x)] => g\ (x) gIC2

ou g\ [/C2] c= K2

b) Mais cette application de Kß dans Kß est bijective car son noyau se

réduit à 0. Soit en effet x e Kß tel que g\ (x) 0, on a x g K% œ Ka,
d'où x g Ka n Kß et x 0 d'après B).

D) Comparaison de Kp et Jv. Désignons par Jv le sous-espace image
de gpv : Jv gPv (En).

1°) Supposons v =£ g. Le théorème C 2°) où k pv donne Kp gPv (Kfi).
Mais K" ci En. Donc Kp c gpgvv (En) Jv.

2°) Prenons v g. On sait que Kv2Pv KvPv Kv. Si x g Kv n Jv

on a gPv (x:) 0 et il existe y g En tel que x gPv (y).
Par suite g2vPv (y) 0 et y g Kv d'où x 0. Donc Kv n Jv { 0 }.

Mais comme Kv Ker [gPv] et /v Im [gpv], on a dim Kv + dim Jv n.

Il en résulte que Kv et Jv sont deux sous-espaces supplémentaires de En.

Au total:
Si v ^g: Kv c E1 et Fcf,
Si v g: Kv © Jv - En

E) Théorème. K1 © K2 © ® Ks En.

Soient en effet oc, ß, p et v des entiers distincts. On a K* + Kß +
+ KpcJv d'où (K*+Kß + ...+Kp) nKv {0}. La somme K1 E K2

+ + Ks est donc directe et comme sa dimension est dx + d2 +
+ ds n on a K1 © K2 © © Ks iv

3°) Prenant pour chaque Kv une base { ßv } (formée de rv dv vecteurs)
la juxtaposition de ces s bases donnera une base { (ß) } de En.
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III. Réduite transjordanienne de /
A) Choix d'une première base de réduction. gv applique Kv dans Kv.

Donc / gv + Xve applique aussi IC dans Kv. La matrice M traduisant /
sur la base (ß) précédente sera formée de blocs diagonaux enchaînés :

;

p
0

»

1

1

1

m

0

0 II2 0

9

ê 0

0 0 M5 ßs

Tous les éléments hors des blocs sont nuls;

Blocs

M1 : matrice (r1? rx)
M2: matrice (r2, r2)

Ms: matrice (rs, rs)

base quelconque de Kv.

B) Construction de la réduite transjordanienne T de f Le processus sera

expliqué sur un exemple; on considère pour chaque Àv, au lieu d'une base

quelconque ßv de Kv, une «base hiérarchisée» de Kv. Pour simplifier les

notations, l'indice v sera supprimé à l'occasion.
Supposons que pour la valeur propre (2V) on ait (pour gv) :

les noyaux itérés Kt a K2 c: K3 c Kv, (p 4),

leurs dimensions d1 4, d2 6, d2 8, 9 d, (d=r 9),

les sauts décroissants ôx =4, S2 2, S3 2, S4 1.

Le choix des vecteurs de base va s'exercer en partant de K4 et remontant
vers Kx; ces vecteurs seront numérotés dans l'ordre inverse de leur choix.

1°) Prenons l'un quelconque S4 des supplémentaires de K3 dans K4,
dim S4 S4 1. Dans S4 prenons une base formée d'un vecteur s9.

2°) On sait que g (S4) c= K3 et g (S4) n K2 {0}. Par suite, K2
+ g (S4) K2 © g (S4) c K3. Or dim [K2@g (S4)\ d2 + ô4 < d2
+ (53 d3. Cette inégalité établit que K2 © g (S4) est un sous-espace
strict de K3. On choisit l'un quelconque Q des sous-espaces supplémentaires
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de K2 © g (S4) sur K3; dim Q d3 - (d2 + ö4) <53 — <54 1. S3

g (S4) © Q est un sous-espace supplémentaire de K2 sur K3.

dim S3 (54 + (<53 — (54) — ô3 — 2

On prendra pour base de S3 : {s8 g (e9), s7 Base de Q}.

3°) On part de S3 et l'on forme g (S3); dim g (S3) ô3 et g (S3)

a K2, g (S3) nK1 { 0 }, g (S3) ® K1 ô3 + d1 ô2 + d2, car
actuellement on a <53 ô2. Donc g (S3) est un sous-espace supplémentaire
g (S3) S2 de K1 sur K2 ; <53 > <54 avait nécessité l'introduction d'un

sous-espace Q pour obtenir S3 Q © g (S4); ici ô2 ô3 et directement

^2 g (S3). On prendra comme base de S2 les deux vecteurs (<52 2):

H g (e8) et z5 g (e7).

4°) dim g (S2) dim S2 ô2 2; $(<S2) est un sous-espace strict
de Ku lequel a pour dimension ô± =4. Prenons l'un quelconque
des supplémentaires Q' de g (S2) sur K1 S1), Q' © g (S2) K1, dim Q'

Ô1 - ô2 2.

Prenons comme base de Kt St : e4, e3, e2, 81? où s4. g (s6), s3

g (^5), ßi et s2 formant une base quelconque de £2'. Au total sur la base

{ s1, e2, fî8, 89 } l'application de Kv dans Kv (gv=f— 2ve) se traduira

par le bloc T'v dit bloc transjordanien. On déduira de T'v le nouveau bloc

transjordanien Tv traduisant sur la même base (base « canonique pour 2V »)

l'application/de Kv dans Kv. Le passage de T'v à Tv se fera en remplaçant

par 2V les zéros de la diagonale principale de T'v.

0000 £1 0 O O

0 00 0 1 r

0 0 0 0 0 0 0

0 000 1 0
0 e* 0 0 1 0

00000 0 0 0 0 0 \ 0 1

0
0 0 i 0

0 0
0 1 0

0
0 0 0 d 0 Ay 0 1

0 0
0 0 £7 0 0

Ay 0

0 0 1 0 A
y 1

1'A |_Ay

I->*<— ^ S — (À: ><T- $ >< 8—545 r>

Matrice T,v (gv restreinte à Kv)

"A "1 " " ^
Matrice Lv (/ restreinte à Kv)
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Le processus indiqué est général. On construit dans l'ordre à partir de Sp

supplémentaire arbitraire de KPv_ x sur KPv.

Exemples des deux types extrêmes de matrices transjordaniennes

0 0

\ 0 0 0

ö Az o o

0
o o 0

0

o o o À2

A3 o

0 0

«»

o Aj

T

r matrice diagonale

1 0

Az 1 oo
o A2 1 o

0
o o

N>

o o A2

0 0

s

0

réduite transjordanienne deff et/" ont le même spectre:

T"

T" matrice « one by one step»
réduite transjordanienne de f"

{ ^2» ^2> ^2? & 2, 23, 2 3 }

Mais les profils sont

1°) pour f { d\=1 dA î"! }

{ d\ 4 d2 r2 }

{ 2 d3 r3 }
Tous les indices 1

2°) pour f" {d\ di r1}

{dj l,d22 2 ,d\3,dl 4 d2 }
{d? l.dl 2 d3 r3}

Tous les sauts 1

Remarque. Si chaque valeur propre est racine simple de l'équation
caractéristique

s n ou r1 — r2 — rn 1

la transjordanienne est a la fois « diagonale » et « one by one step ».



IV. Condition nécessaire et suffisante de similitude
DE DEUX MATRICES

A) Spécifique d'un endomorphisme f de En. On choisit, une fois pour
toutes, une relation d'ordre co sur C. Le spécifique de f est formé

1°) du spectre ordonné de f : X2, X2, • •••? K >

ri r2 rs

(Xt co A2 co 2S_ x co Xs).

2°) des s profils relatifs à chaque valeur propre:

{dl,dv2, ...,dvpv_udvpv dvrv} (v 1, 2, s)

B) Spécifique d'une matrice A (n, n). Soient deux bases (</) et (/"')
de En. Considérons les endomorphismes / se traduisant par A sur {/),
f se traduisant par A sur {/').

On démontre facilement que le spécifique de / coincide avec celui def
(même spectre ordonné et mêmes profils). Ce qui justifie la définition:

Le spécifique d'une matrice A (n, n) est le spécifique commun à tous les

endomorphismes se traduisant par A, sur toutes bases possibles de En.

C) Première bijection. Il y a bijection entre

{ matrices transjordaniennes T } et { spécifiques (S) }

T4-> S (S étant le spécifique qu'enregistre T).

D) Seconde bijection.

a) Soit un représentant A d'une classe d'équivalence (Cfi) dans l'ensemble
des matrices {n, n). Considérons une base quelconque {/) et soit /
l'endomorphisme traduit par A sur prenons la réduite
transjordanienne T de f: le même f est traduit

a) par A sur (f).
ß) par T sur (V) (base canonique de /).

b) Dans une même classe (CA), il ne peut y avoir deux représentants trans¬

jordaniens distincts. Supposons deux transjordaniennes équivalentes;
elles traduisent le même endomorphisme / sur deux bases d'où

spécifique de / spécifique de T spécifique de T\
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Les transjordaniennes T et V ayant le même spécifique (qu'elles
enregistrent) sont confondues,

c) Toute transjordanienne T appartient à la classe (CT). Au total: il y a

bijection entre {matrices transjordaniennes T} et { Classes d'équi-
j valence (CA) }

Réunissant les deux bijections, il y a bijection entre

j { classes d'équivalence (CA) } et { spécifiques (S) }.

5 D'où le théorème qui justifie l'introduction des transjordaniennes et des

l spécifiques :

i| D) Théorème. Pour que deux matrices A et B soient équivalentes il
| faut et il suffit que leurs spécifiques soient confondus.

|l E) Remarque importante. Les théorèmes précédents d'unicité et de

| bijection disparaissent si, au lieu de réduites transjordaniennes, on prend
P des réduites jordaniennes J.
M Cela provient du fait qu'un endomorphisme possède plusieurs réduites de

Jordan. Dans chaque classe (CA) il y a plusieurs représentants jordaniens
(mais un seul transjordanien).

Ij V. Applications

L'utilisation des transjordaniennes, de leurs profils (avec les sauts ôvq

et les indices pj) permet de résoudre facilement certaines questions. On peut
H ainsi obtenir certains résultats donnés ici sans démonstration.

| A) Polynômes minimums. Soit un polynôme Qe C [X] et A une matrice
Il (/?, n) donnée:

i: QC-) Z «/ K, QO)z aj AJ, C
Il j' i ; i
L'I

|j Soit PP {Qe C [X\; Q (A) 0}. On sait que SP est un idéal de
tj C [X]; cet idéal est principal; soit n son générateur:

I Qe SP o Q (A) 0 o Q multiple de n

| Or le polynôme caractéristique P de A appartient à SP (Cayley Hamilton),

I P{X) - (^-^(^-Ap...^-^.
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Donc, 7i étant un diviseur de P,

ti(a) - ...as-A)-
où a1 < ru a2 < r2i ocs < rs. On démontre que av — pv(i— 1, 2, j),
c'est-à-dire:

Théorème de l'indice. Le polynôme minimum de T (défini à une constante

multiplicative près) est

ti(A) (A - Ai)Pl (A - A2)P2... (A - As)Ps.

C<xy particuliers.

1°) Si T est diagonalisable: 7r (A) (A-Ax) (A —A2) (A-As).

2°) Si A est « one by one step »: n (A) (A — A^1 (A — A2)?2 (A —As/S

P (A).

B) Matrices commutant avec une matrice donnée A. Soit E' { XeE;
AX XT { où E est l'espace vectoriel des matrices n, n sur le corps C

(.AeE'). E' est un sous-espace vectoriel de E. Sa dimension dépend bien
entendu du spécifique de T. On peut démontrer qu'elle est égale à la somme
des carrés de tous les sauts.

dim (E1)E [É (AP2]
v 1 q 1

Cas particuliers:

1°) T diagonalisable: dim (£") *=» + rf 4- + r2s.

2°) A « one by one step »: dim (E') r1 + r2 + + rs n.

C) Série entière en A. Il est facile de former la puissance #ième d'une

transjordanienne, d'où la puissance gième d'une matrice A. Soit la série

entière
00

/(z) E a«z4
q= 1

de rayon de convergence R. On considère la série de matrice A

oo

E %
q l

Elle est convergente de somme la matrice f(A) à condition que | Av |

< jR (v 1, 2,..., s). Passant par l'intermédiaire de la réduite
transjordanienne T de A, on construit effectivement



00

/CO I <*qTq
q 1

au moyen des valeurs de /(z) et de ses dérivées pour z ~ Âu z As.

On a alors f(A) Po f (T) o P~x, P étant la matrice de passage (A
P TP"1). On peut obtenir un théorème généralisant celui des polynômes

minimums

/ (A) 0 o f(z) admette Av comme racine d'ordre > pv

v 1, 2, s

D) Limite lorsque q -» oo de la direction (Aq) transformée par fq
de la direction donnée (d0). Soit v # 0, fixe, un vecteur directeur de (A0);
le vecteur f'q (x) ou tout vecteur Wq colinéaire à ce dernier, est directeur de

(Aq). Si lim Wq L, la direction limite de (Aq) sera celle de vecteur directeur

L. ^°°
On décompose x x1 + x2 + + xs; xv e Kv KvPv et obtient

(1) fq (xv) A?xv + C^r^v(xv) Ht +

On classe les valeurs propres par module décroissant:

\A1\>\A2\> ...>\AS\.
Si | Ai | > | X2 I et x 1 # 0, on obtient le résultat connu: il y a une limite
de (Aq) de vecteur directeur LeK{ que l'on détermine.
Si | Ax | | X2 I, l'étude se poursuit au moyen de (1)

E) Résolution du système différentiel linéaire.

X
Xi(0

(0

dX
(I) —=AX

dt

unicolonne de n fonctions inconnues de C dans C, A (n, n)

connue. On transmue (X) en (S) par la matrice de passage P telle que
T P"1 AP, T réduite transjordanienne de A, en faisant le changement
d'inconnue X P Y:
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Ce système (S) se décompose en

dY1
1 t

dY2
9

dYs
—7- Tl Y1 T2Y\ Ts Ys,
dt dt dt

Tv étant le bloc transjordanien afférent à Âv.

dYv
Le système Tv Yv sera très simple, la dérivée d'une composante

dt
dyk

yk étant simplement — Xv yk + oc yk+l, oc 0 ou 1 0 < l < rv — fc
dt

l'intégration de (*S) est alors immédiate; on en déduit celle de (L).

1°) Système (L) à solutions exponentielles pures ou à solutions algébrico-
exponentielles (xk somme de produits d'exponentielles par des constantes

ou somme de produits d'exponentielles par des monômes dont l'un au moins
a un degré > 1).

(L) à solutions exponentielles pures o A diagonalisable

2°) Systèmes (S) monoréductible. C'est un système où la résolution se

ramène à la résolution d'une équation différentielle d'ordre n par rapport à

une composante, les autres composantes s'obtenant par dérivations de

celle-là. On montre que

(Z) monoréductible o A « one by one step ».

Reçu le 5 septembre 1976)

A. Fontaine

129, rue de l'Abbé-Groult
F-75015 — Paris
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