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PROFILS ET REDUITE TRANSJORDANIENNE
D’UNE MATRICE CARREE

par André FONTAINE

I. ITERATION D’UN ENDOMORPHISME (SINGULIER)

Rappel. Propriétés classiques des noyaux itérés

E, étant un espace vectoriel de dimension finie # sur C, soit g un endomor-
phisme de E, dans E,; nous le supposons singulier, c’est-a-dire dim Ker (g)
> 1; Ker (g) est le sous-espace propre afférent a la valeur propre 4 = 0
de g.

A) On considére la suite des « noyaux itérés de g »:
(1) Ker (9) = K, Ker (¢*) = K,, ..., Ker (99) = K, ...

On sait que ces noyaux sont emboités, K, = K, ;. La suite des dimensions
de ces noyaux est croissante:

(2) dl = dlm(Kl) < dz - dim(Kz) < T < dt] == dim(Kq) < e \< n.
B) Il existe un unique entier p tel que
dl < d2 < "’dp—l < dp = dp+1 == dp+2 = aee C’CSt-E‘l—dlre
Kl C K2 C a0 & Kp_1 (= Kp == Kp+1 = Kp+2 = ...
(inclusion au sens strict).
d, = d est la « dimension maximum des noyaux itérés » et ’on démontre
que d = r, r étant 'ordre de multiplicité de la valeur propre 1 = 0, c’est-
a-dire 'ordre de multiplicité de la racine 1 = 0 de 1’équation caractéris-
tique de g [cf. par exemple: R. Godement, Cours d’Algébre, Hermann,
Paris, 1965].
C) On a ainsi les inéquations 0 < p<<d=r<n.

p se nommera /’indice de g pour la valeur propre . = 0; c’est le nombre
minimum d’itérations a faire sur g pour que la dimension du noyau de
I’itéré atteigne son maximum d = r,
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D) Le profil d’un endomorphisme singulier g est formé des p nombres
{dy,dy,...,d,_{,d, = r}. Cette suite, extraite de (2), est strictement
croissante. Concrétement, on prendra dans un repére orthonormé les points
M, My, ..., M,, M, ..; le point M, ayant pour coordonnées X, = q
eN, y, = d,. On y adjoindra le point M, (0, 0) qui correspond a g° = e,
endomorphisme identique, d, = 0. La ligne brisée de sommets successifs
M, =0,M,M,,..,M,, M,,,.. prendra également le nom de profil
de I’endomorphisme singulier g. A partir du profil de g, on construira la
suite de ses sauts '

(3) {51,52,...,5(1,...} Ol‘l 511 = dq ""‘dq_l
(en particulier 6; = d; —d, = d,).

Nous allons établir que cette suite des sauts est décroissante; c’est le

THEOREME DE LA CONVEXITE. § . <C0,.
Soit S,;; un sous-espace supplémentaire de K, sur K, ;. Considérons
'image g (S,+,) de S,+, par g.

1°) Soit x un vecteur non nul de S, ;. Ona g?™' (x) = Oet g?(x) # 0
donc g (x)e K, et g (x) ¢K,_,
d’otr

(4) g(Sq+1) CKq; g(Sq+1)qu—1 = {0}
On déduit de (4)
(5) dim g (Sq+1) < dq — dq—l .

2°) Montrons que la restriction de g a S, | est injective.

Soit {vy, vy, .V} OU @ =0,y = d,yy — d, une base de S, .
Une partie génératrice de g (S,+¢) est 2 = {g (v1), 9 (v2), ..., g (v,) }. Si
I’on montre que X est une partie libre, le résultat proposé sera établi.

Soient « scalaires p, p,, ..., p, tels que

P1g(v) +p29(v2) + ..o + g () =0,

On a donc W = pvy + pyv, + .. + pv, €Ky et aussi WekK; n S, ;.
Mais K, nS,.1 <K, 0S4y ={0}, dou W =0 et p; = p,
= ... = p, = 0, ce qui établit que X est libre.
Il en résulte

(6) dlm g(Sq-i-l) = dq+1 - d

q
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Rapprochons (5) et (6): d,4y — d, <d;, — d;—q OU 0y1 1 < 0,, d’ou
pour la suite des sauts
51 = dl > 52> cee > 5}7"‘1 >5P > O = 5p+1 — 5p+1 =

30) La ligne brisée profil de g pour A = 0 est convexe car S

d —d
> —"ill 1 s°écrit pente (M, M,) > pente (M, M, ).

II. ANALYSE D’UN ENDOMORPHISME f. THEOREMES PRELIMINAIRES

A) Notations. Soit le polynome caractéristique de f
PR = Q=DM Ay=D2 . (A=A [ri+r,+...+r;=n].
Le spectre de [ $’€ctit: Ay, ooy Ay s Aoy oy Aoy veny Agy veey Ag

rq Fx r

liste obtenue en répétant chacune des s valeurs propres distinctes & son ordre
de multiplicité.
Considérons les endomorphismes singuliers g, = f — e (v=1,2, ..., 5),

e étant ’endomorphisme identique; g, admet la valeur propre 0, a ’ordre r,.
Pour chaque v, on détermine le profil de g, pour la valeur propre 0, soit
{di,d;, ..., dp,} ou d, = dim Ker (g7). Le noyau maximum de g, sera
désigné par K* [K®=Ker (¢5")]. On a:

{KfCKgc...cK;v =K' = Kp,1q = ...

di <djy..<dp, =d" =d,,.{ = ...

Inclusions et inéquations au sens strict. On sait que d* = r,.
Par définitions;

J 19 {d{, d;, ..., dy,} = profil de g, pour A = 0

] = profil de f pour 1 = 4,

| 2°) py, = indice de f pour la valeur propre 4,.

B) THEOREME DE LA DISJONCTION. Ce théoréme classique, dont la démons-
tration ne sera pas reproduite, s’exprime par

o #f=KnK = {0}

(voir, par exemple, la référence antérieure).
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C) Etude de I’application g* (k>1)

19) L application g% appligue K* dans K* On a vu que g, = g
applique K* dans K%, d’ou, a fortiori

gy [K"] < K* (Inclusion stricte).

20) L’application g% restreinte @ K* () est une bijection de K*
sur K&

a) gk applique K* dans K*. Remarquons que g, = f — Aeetg, = f — e
commutent, donc g} o g52 = g2 0 g% (on a pris pour simplifier « = 1,

B = 2).

xeK?=g52(x) = 0= (g 0 g5 (x) = 0= g5 [g] ()] =g} (x) eK?
ou gf [K%] = K2,

b) Mais cette application de K? dans K* est bijective car son noyau se
réduit 2 0. Soit en effet x e K# tel que g* (x) =0, on a x e K¥ = K*,
d’olt xe K* n KP et x = 0 d’aprés B).

D) Comparaison de K* et J°. Désignons par J' le sous-espace image
de 9”1 J, = gy" (E). |
19) Supposons v # u. Le théoréme C 20) ou k = p, donne K* = gP¥ (K¥).
Mais K* < E,. Donc K* = g% (E,) = J".
20) Prenons v = p. On sait que K,, = K, =K. Si xeK"' nJ’
on a g¥” (x) = 0 et il existe y € E, tel que x = g2 (p).
Par suite g7 (y) = 0 et yeK” d’oit x = 0. Donc K* nJ* = {0}.
Mais comme K = Ker [¢g”*] et J* = Im [¢2"], on a dim K¥ + dim J® = n.
Il en résulte que K" et J* sont deux sous-espaces supplémentaires de E,.
Au total:
Siv#u: K'<J* e KtclJ,
Siv=u: KN®J" =E,.

E) TaforEME. K' @ K* @ ... ® K* = E,.

Soient en effet o, 8, ..., p et v des entiers distincts. On a K* + K# + ...
+ K’ < J® dott (K*+KP+..+K?) nK*={0}). La somme K'+ K?
+ ... + K est donc directe et comme sa dimension est d; + d, + ...
+ d, = n on aK'®K*®.. DK = E,.

30) Prenant pour chaque K" une base { 8’ } (formée de r,=d, vecteurs)
la juxtaposition de ces s bases donnera une base { (f) } de E,.

|
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III. REDUITE TRANSJORDANIENNE DE f

A) Choix d’une premiére base de réduction. g, applique K" dans K.
Donc f = g, + A,e applique aussi K” dans K’. La matrice M traduisant f
sur la base (B) précédente sera formée de blocs diagonaux enchainés :

i TR 2 43

S -

M’ 0 0 B

0 I B Blocs

[
.. O M*': matrice (F,71)
M?: matrice (r,, 5)

0 0 b a7 N

M *: matrice (r, ry)

T R S TN S TRy

- —
Tous les éléments hors des blocs sont nuls; f* = base quelconque de K.

B) Construction de la réduite transjordanienne T de f. Le processus sera
expliqué sur un exemple; on considére pour chaque 4,, au lieu d’une base
quelconque ¥ de KV, une « base hiérarchisée » de K". Pour simplifier les
notations, I'indice v sera supprimé a I’occasion.

Supposons que pour la valeur propre (4,) on ait (pour g,):

les noyaux itérés K; <« K, « K; =« K, = K*, (p=4),
leurs dimensions d, = 4, d, = 6, d; =8, d, =9 =d, (d=r=9),
les sauts décroissants 6, = 4, 6, = 2, 6, = 2, §, = 1.

Le choix des vecteurs de base va s’exercer en partant de K, et remontant
vers Ky ; ces vecteurs seront numérotés dans ’ordre inverse de leur choix.

1°) Prenons 'un quelconque S, des supplémentaires de K5 dans K,
dim §, = 6, = 1. Dans S, prenons une base formée d’un vecteur &,.

2°) On sait que g (S,) = K3 et g(Sy) nK, = {0}. Par suite, K,
tg(S) =K, @9 (S4) =Kz Or dim [K,®g (Sl =d, + 6,4 < d,
+ 05 = d;. Cette inégalité établit que K, @ g (S,) est un sous-espace
strict de K. On choisit I'un quelconque Q des sous-espaces supplémentaires
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de K, ®g(S,) sur Ky; dimQ = d; — (d,+6,) = 65 — 0, = 1. S,
= g (S4) ® Q est un sous-espace supplémentaire de K, sur K;.

dim S3 = 54_ + (53_54) = 53 = 2.

On prendra pour base de S;: {eg = g (¢9), &; = Base de Q}.

3°) On part de S5 et 'on forme g (S5); dim g (S3) = 65 et g (S3)
<Ky, g9(S3) 0Ky ={0},9(S;) ®K, =6, +d; =0, +d, =d,,car
actuellement on a §; = §,. Donc g (S;) est un sous-espace supplémentaire
g(S3) =S, de K; sur K,; 85 > 0, avait nécessité I'introduction d’un
sous-espace  pour obtenir S; = Q @ g (S,); ici 6, = 5 et directement
S, = g (S5). On prendra comme base de S, les deux vecteurs (0,=2):
g = g (gg) et &5 = g (&7).

40) dim g (S,) = dim S, = 6, = 2; ¢(S,) est un sous-espace strict
de Ky, lequel a pour dimension d, = o, = 4. Prenons I'un quelconque
des supplémentaires ' de g (S,) sur K; (=5,), @ @ g (S,) = K, dim Q'
=0; — 0, = 2.

Prenons comme base de K; = S;: &4, €3, €3, &, OU &4 = g (&), €3
= g (¢&5), &, et &, formant une base quelconque de 2'. Au total sur la base
{ &1, €3, ..., €, & ; I'application g, de K dans K” (g,=f—A,e) se traduira
par le bloc T'" dit bloc transjordanien. On déduira de 7" le nouveau bloc
transjordanien 7" traduisant sur la méme base (base « canonique pour 4, »)
I’application f de K” dans K". Le passage de 7" a T se fera en remplagant
par A, les zéros de la diagonale principale de 7.

0 o 0o '81'7\000 | ]
0 Y 0
0o 0 00 0 Elo A o0 o 0
0 0 00t o, g200 o Aol o 0
0 0 00]|g o o o oo 1
04 © A, 0l o
0 ’ 0|5 0 ’ 0
o olo 1 &g o Ao 4
0 0 & A, O
0 0 —| 7 0 0 | |—
0 o|d]& o AL
LA 1 | 2

<— 8§ =K—><5,>< 5,5 < E=d—><b><df>

Matrice T"" (g, restreinte a K") Matrice TV ( f restreinte a KV)
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Le processus indiqué est général. On construit dans I’ordre a partir de Sp,
supplémentaire arbitraire de K, _; sur Kj,.

Exemples des deux types extrémes de matrices transjordaniennes

A o /_ .
A 000 A, 1o 0
0 A, 0 0
0 0 Ao o o A, 4
° o A 0 0 0 A,
Ao A, 4
0 0 ¥ 0 0 3
0 A; 0 A?’
" J }
Tl TN
T’ = matrice diagonale T" =

= matrice « one by one step»
= réduite transjordanienne de f”
{ /113 )’23 127 /123 )~2> /’{3, /’{3 } .

—— -

= réduite transjordanienne de f”
/' et f” ont le méme spectre:

N, s/

Mais les profils sont

19 pour f'{d;i =1=d, = ry
{di =4 =d, =75}
{di =2 =d, = 73}
Tous les indices = 1
29 pour f"{dy =d; =r}
{di = 1,d5 =2,d% =3,d> = 4 = dy =1y}
{d; = 1,d; =2 = dy = r3}
Tous les sauts = 1
Remarque. Si chaque valeur propre est racine simple de I’équation
caractéristique

S = n ou I‘1=l”2=...“

la transjordanienne est a la fois « diagonale » et « one by one step ».
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IV. CoONDITION NECESSAIRE ET SUFFISANTE DE SIMILITUDE
DE DEUX MATRICES '

A) Spécifique d’un endomorphisme f de E,. On choisit, une fois pour
toutes, une relation d’ordre w sur C. Le spécifique de f est formé

19) du spectre ordonné de f: A(y .o, iy Aay s Aoy ceey Agy vey Ag s
Fq rs Fs
Aiowl,w..A_ioAi).

20) des s profils relatifs a chaque valeur propre:

{di,dy,....d,,_y,dy, =d, =r,} (v=1,2,...,5).

B) Spécifigue d’une matrice A (n, n). Soient deux bases () et (£)
de E,. Considérons les endomorphismes f se traduisant par A4 sur (%),
f’ se traduisant par 4 sur ((¢’).

On démontre facilement que le spécifique de f coincide avec celui de f”
(méme spectre ordonné et mémes profils). Ce qui justifie la définition:

Le spécifique d’une matrice A (n,n) est le spécifique commun a tous les
endomorphismes se traduisant par A, sur toutes bases possibles de E,.

C) Premiere bijection. 1l y a bijection entre

- { matrices transjordaniennes 7 } et { spécifiques (S) }

T+ S (S étant le spécifique qu’enregistre 7).

D) Seconde bijection.

a) Soit un représentant 4 d’une classe d’équivalence (C,) dans I’ensemble
des matrices (n, n). Considérons une base quelconque () et soit f
I’endomorphisme traduit par 4 sur (#); prenons la réduite transjor-
danienne 7" de f: le méme f est traduit

o) par A sur (J¢).
f) par T sur (S) (base canonique de f).

b) Dans une méme classe (C), il ne peut y avoir deux représentants trans-
jordaniens distincts. Supposons deux transjordaniennes équivalentes;
elles traduisent le méme endomorphisme f sur deux bases d’ou

spécifique de f = spécifique de T = spécifique de 7.
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Les transjordaniennes T et 7’ ayant le méme spécifique (qu’elles enre-
gistrent) sont confondues.

¢) Toute transjordanienne T appartient a la classe (Cr). Au total: il y a
bijection entre { matrices transjordaniennes 7'} et { Classes d’¢qui-
valence (C) }

Réunissant les deux bijections, il y a bijection entre

{ classes d’équivalence (C,) } et { spécifiques (S) }.

D’ol1 le théoréme qui justifie introduction des transjordaniennes et des
spécifiques:

D) THEOREME. Pour que deux matrices A et B soient équivalentes il
faut et il suffit que leurs spécifiques soient confondus.

E) Remarque importante. Les théorémes précédents d’unicité et de
bijection disparaissent si, au lieu de réduites transjordaniennes, on prend
des réduites jordaniennes J.

Cela provient du fait qu’un endomorphisme possede plusieurs réduites de
Jordan. Dans chaque classe (Cy) il y a plusieurs représentants jordaniens
(mais un seul transjordanien).

V. APPLICATIONS

L’utilisation des transjordaniennes, de leurs profils (avec les sauts J,
et les indices p,) permet de résoudre facilement certaines questions. On peut
ainsi obtenir certains résultats donnés ici sans démonstration.

A) Polynomes minimums. Soit un polyndome Q € C [X] et 4 une matrice
(n, n) donnée:
P ' P ‘
Q) = Y a; X, Q(4) = ) o;47, o;eC.
ji=1 i=1
Soit & ={QeC[X]; Q(4) = 0}. On sait que £ est un idéal de
C [X]; cet idéal est principal; soit 7 son générateur:
Qe < 0(4) = 0< Q multiple de .
Or le polyndme caractéristique P de 4 appartient & & (Cayley Hamilton),

P = (=D (A= A2 (A=)




— 126 —

Donc, n étant un diviseur de P,
() = (A =D (A, =D)2 . (A, =) )

oU oy 7y, Uy <Py, ..., &y < Fe. On démontre que o, = p, (v=1, 2, ..., 5),
c’est-a-dire:

THEOREME DE L’INDICE. Le polyndme minimum de 4 (défini & une cons- |
tante multiplicative prés) est | i
n(A) = (A=2)P (A=) .. (A=2)Fs.

Cas particuliers.

1°9) Si A4 est diagonalisable: = (1) = (A—4,) (A—41,) ... (A —4y).

20) Si Aest «one byone step»: t(d) = A—A) 1 (A—1,)2...(A=A)"
= P

B) Matrices commutant avec une matrice donnée A. Soit E' = { X € E;
AX = XA { ou E est I’espace vectoriel des matrices n, n sur le corps C
(AeE’). E' est un sous-espace vectoriel de E. Sa dimension dépend bien
entendu du spécifique de 4. On peut démontrer qu’elle est égale a la somme

des carrés de tous les sauts.
Py

simE) = 5[5 @]

| S R A

Cas particuliers:
19 A diagonalisable: dim (E') = r} + r3 + ... + rl.

20) A «one by one step»: dim(E’) =r; +r, + ...+ 1, = n.

C) Série entiere en A. 1l est facile de former la puissance giéme d’une
transjordanienne, d’ol la puissance gieme d’une matrice A. Soit la série
entiére

1= % 4

de rayon de convergence R. On considére la série de matrice 4

0

S oa, A%,
q=1
Elle est convergente de somme la matrice f(A4) a condition que | 4, |
< R(=1,2,..,5). Passant par lintermédiaire de la réduite transjor-
danienne T de A, on construit effectivement
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o0

(= » aT°

q=1

au moyen des valeurs de f(z) et de ses dérivées pour z = Ay, ...,z = A,
On a alors f(4) = Po f(T)o P~*, P étant la matrice de passage (A4
= P TP~ 1. On peut obtenir un théoréme généralisant celui des polynémes
minimums

f(A) = 0 < f(z) admette A, comme racine d’ordre > p,

v =1,2,..,5.

D) Limite lorsque q — oo de la direction (4,) transformée par f*
de la direction donnée (4,). Soit x # 0, fixe, un vecteur directeur de (4,);
le vecteur f9 (x) ou tout vecteur W, colinéaire a ce dernier, est directeur de
(4,). Silim W, = L, la direction limite de (4,) sera celle de vecteur direc-
teur L. 7%

On décompose x = x' + x> + ... + x*; x*e K’ = K}, et obtient

(D) 1) = Ax" + Cp 4771 g, (") + .o+ CPP 121D ghv =ty
On classe les valeurs propres par module décroissant:
[ A= 1A= =14,

Si |Ay] >1A,] et x5 0, on obtient le résultat connu: il y a une limite
de (4,) de vecteur directeur L € K 1 que I'on détermine.
Si | Ay | = |4y, I'étude se poursuit au moyen de (1) ...

E) Résolution du systeme différentiel linéaire.

(2) ax AX
dt
xq (1)
X =]\ = unicolonne de # fonctions inconnues de C dans C, 4 (n, n)
Xy (1)

connue. On transmue (X) en (S) par la matrice de passage P telle que
T = P~' A P, T réduite transjordanienne de 4, en faisant le changement
d’inconnue X = P Y:

dY

(5) — =TY.
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Ce systeme (S) se décompose en

dy'’ Loy dY? dy*
— =T YY", ———=T2Y2, ooy —— =T Y",
dt dt dt

TV étant le bloc transjordanien afférent a A,.

v

Le systeme — = TV YV sera trés simple, la dérivée d’une composante
x . dyi
¥, étant SJmplementd—t =AW+ oV, 2 =0o0ul, 0<I<r, —k

I’intégration de (S) est alors immédiate; on en déduit celle de ().

1°) Systéme (X) a solutions exponentielles pures ou a solutions algébrico-
exponentielles (x, = somme de produits d’exponentielles par des constantes
ou somme de produits d’exponentielles par des mondmes dont I’un au moins
a un degré > 1).
(2) a solutions exponentielles pures <> A4 diagonalisable

20) Systemes (X) monoréductible. C’est un systéme ou la résolution se
raméne a la résolution d’une équation différentielle d’ordre n par rapport a
une composante, les autres composantes s’obtenant par dérivations de
celle-la. On montre que

(X) monoréductible <> 4 « one by one step ».

( Regu le 5 septembre 1976)

A. Fontaine

129, rue de ’Abbé-Groult
F-75015 — Paris
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