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One may show dy direct matrix arguments that, if m >2, then ¢ = 0
if n is odd (corresponding to the absence of a non-singular vector field
on S"~ 1) and that all even values of ¢ occur if n is even. The question
whether odd values of ¢ occur reduces to the question whether ¢ = 1 occurs
and this in turn leads to the consideration of the Hurwitz-Radon Theorem
(see Section 2). Eckmann uses the then existing, scanty knowledge of
homotopy groups of Stiefel manifolds to obtain special results (when
g # n — 1)-—we would do the same today, but would benefit from our
more extensive knowledge.

Indeed, Eckmann himself returned to the question 24 years later when
he lectured at a Battelle Rencontre in Seattle [67; 1968]. By this time, of
course, Adams had proved his celebrated Hopf Invariant One Theorem and
the properties of topological K-theory had been substantially developed.
Eckmann performed the significant feat of explaining the theory, and its
applications—to systems of linear equations, to the existence of (generalized)
vector products in R”, to the parallelizability of spheres, and to the existence
of almost-complex structures on spheres—of explaining all this to an audi-
ence dominated by theoretical physicists! What testimony to his clarity—
and courage!

2. A GROUP THEORETICAL PROOF
OF THE HURWITZ-RADON THEOREM

Immediately following the work discussed above, Eckmann produced
[9; 1943] a truly beautiful proof of the celebrated theorem on the composition
of quadratic forms. The problem is to determine, given n, those values of p
such that there exist n bilinear forms zy, ..., z, of the variables x,, ..., Xy
Y1 - YV With complex coefficients, such that the identity

(2.1) X+ +X) i+ +YY) = 2F 4+ .+ 22

holds. As formulated by Radon in 1923, the solution is the following. Let
n=u.2%"" with u odd and 0 < B < 3. Then we can find z,, ..., z, to
satisfy (2.1) if and only if p << 8« + 2%. Actually, Radon considered forms
with real coeflicients, but Eckmann showed explicitly in his proof that a
solution of (2.1) for forms with complex coefficients implies a solution for
forms with real coefficients. Eckmann’s proof is based on the classical
theory of (complex) representations of finite groups, together with certain
particular results, due to Frobenius and Schur, relating complex to real
representations. Before outlining Eckmann’s proof, let me quote Eck-




|
|

— 196 —

mann’s own remarks justifying his sortie into this well-established field,
since it contains a key statement of his approach to what may be called the
systematics of mathematical exposition. Eckmann wrote:

“Es erscheint aus folgenden Griinden nicht tiberfliissig, zu den Beweisen
von Hurwitz und Radon noch einen dritten hinzuzufiigen: einmal ist unser
Beweis einfacher und kiirzer—dafiir operiert er aber mit weniger elementaren
Begriffen und Séitzen; ferner sind die Methoden von Hurwitz wie auch von
Radon ad hoc konstruiert und liegen auBerhalb der sonst in der Algebra
Ublichen, widhrend wir die Frage in die wohlbekannten Gedankenginge
der Darstellungstheorie einordnen, wo sie als schones Beispiel fiir die
Anwendung allgemeiner Sitze erscheint.” 1)

Once again the problem is first replaced by a matrix problem (this step
is, of course, common to all three proofs). Thus we seek p complex orthogo-
nal n X n matrices Ay, ..., 4,, such that A A, + A, 4, =0, ] # k. By
normalizing we may instead seek p — 1 complex orthogonal n X n
matrices 4y, ..., A,_ 4 such that

(2.2) Ap = =1, A A = —A AL k1 =1,2,..,p—1,k # 1.

Ignoring for the moment the orthogonality condition, Eckmann considers
the abstract group G, generated by (ay, a,,...,a,_q, €), subject to the
relations

(2.3) & = 1,a; = ¢, apa, = ea,ay, k,1 =1,2,...,p — 1,k # 1,

and investigates complex representations of G of degree n whereby ¢ is
represented by — /. The order of G is 27; if p = 2, G = Z/4 and the
problem is trivial, so we assume p >3. G has 2?7~ ! non-equivalent rep-
resentations of degree 1; by counting conjugacy classes it follows that,
if p is odd, G has an irreducible representation of degree f > 1 and, if p

is even, then G has 2 irreducible representations of degrees f, f' > 1. It is
p—1

easy to see (from standard theorems of representation theory) that f = 2 2

p—2

if p is odd, and that f = f* = 2 % if p is even. Moreover ¢ will be rep-
resented by —7 in these irreducible representations, since it cannot be

by “It seems, on the following grounds, not to be superfluous to add a third proof to
those of Hurwitz and Radon: on the one hand, our proof is simpler and shorter, although
it employs less elementary ideas and theorems; further, the methods of Hurwitz and
Radon were constructed in ad hoc fashion and lie outside the domain of standard algebra,
whereas we set the problem in the familiar framework of representation theory, where it
serves as a beautiful example for the application of general theorems”. (my italics).
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represented by 7. Thus the degree n of an arbitrary representation of G of
the required kind is given by

p—1 P2

(2.4) n=m.2 2% ,podd; n =m.2 ? ,peven.

It remains to determine which of those representations are equivalent
to an orthogonal representation—these will also, according to Frobenius-
Schur, be equivalent to orthogonal real representations. Corresponding

to an irreducible representation D of G, one computes S = X ¥ (97,
geG

where y is the character function. Then D is real-equivalent if and only if
S > 0; D is equivalent to its complex conjugate D if S < 0; and D is not
equivalent to D if S = 0. By a very beautiful application of the elementary
theory of complex numbers, Eckmann used this criterion to show that the
given irreducible representations of G (whereby ¢ is represented by —/)
are real-equivalent (that is, orthogonal-equivalent) if p = 7,0, 1 mod 8,
and not otherwise. If p = 3, 4, 5 mod 8 they are equivalent to their complex
conjugates; if p = 2, 6 mod 8 they are not. One may immediately deduce
the degrees of real-irreducible real representations of G, and hence show
that for a given n = u . 2", with u odd, the maximum value of p such that
there exists a real (orthogonal) representation of G' of degree n, in which
¢ 1s represented by — 7, is given by the rule:

t = 4o p = 8a + 1

I =40 4+ 1: p = 8a + 2

t =40+ 2: p = 8a + 4

t =40+ 3: p = 8u + 8.
This is the Hurwitz-Radon Theorem. Today we know that, when translated
into the language of vector fields on spheres, the Hurwitz-Radon number
p — 1 provides an upper bound on the number of vector fields on S" !

even without the linearity condition; this was, of course, proved by Adams
exploiting the techniques of topological K-theory.

3. COMPLEXES WITH OPERATORS

Here perhaps I trespass somewhat on Saunders MacLane’s territory.
But I do want to exemplify a characteristic feature of Eckmann’s thought,
whereby he passes freely to and fro between topology and algebra, gener-




	2. A group theoretical proof of the Hurwitz-Radon Theorem

