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QUADRATIC FORMS IN AN ADELIC SETTING ')

by Lawrence VERNER

1. INTRCODUCTION

The connection between Siegel’s main theorem in the analytical theory
of quadratic forms and the determination of the Tamagawa number of the
orthogonal group has been discussed in expository articles by Kneser [I]
and Tamagawa [5]. Both of these papers, however, consider only a special
case of Siegel’s general theorem, namely the number of representations of
a quadratic form by itself. In the present paper we consider the problem of
representing a positive definite form by another positive definite form.
Siegel’s main theorem is derived from an adelic integral formula, Ono’s
“mean value theorem”, which is the analogue for the adelized orthogonal
group of Siegel’s mean value theorem in the geometry of numbers.

2. THE MEAN VALUE FOrRMULA

The adelic mean value formula generalizes Siegel’s mean value theorem
in the geometry of numbers [3]. We first describe Siegel’s theorem as
reformulated by Weil [§].

Let @ be a continuous function of R” (n>2) with compact support. Then

D(g) = > D(gx)

XeZn— {0}

- defines a function on SL, (R), right invariant by SL, (Z). According to
Siegel’s theorem, SL, (R) / SL, (Z) has finite measure, @ is integrable on
this space, and

P (g)dg
SL,(R)/SLp(Z)
dg

SLn(R)/SLn(Z)

= [ & (x)dx.
Rn

In Siegel’s original formulation, @ is taken to be the characteristic function

1) The author would like to express his appreciation to Professor T. Ono for his
valuable advice.
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of a compact set K. The right-hand side of the above formula reduces to the
volume of K, while the left-hand side gives the mean value of

card (L — {0} n K),

as L varies over all Z-lattices in R” with volume 1.

We turn now to the adelic mean value formula. Let G be a linear al-
gebraic group defined over Q, and let X be an algebraic homogeneous space
for G, defined over Q. For £e X, let G, = {ge G:g& = &}. We assume
that

a) X has at least one rational point
b) for any ¢ e X, both G and (G, have finite fundamental groups
c) for any extension field K of Q, G acts transitively on Xy.

We then have the following result.

THEOREM (Ono [2]). There are canonical measures on the adele spaces
G, and X, such that, given any continuous function ¢ on X, with compact
support,

[ ) @(gx)dg
(4 AIR0 P00 = [ &(x)dx,
T (G&_f) Xj;i
where ¢ is any element of X, and 7 (G,) = the invariant measure of
(Ge)4 | (Gg)g. The analogy to the previous mean value theorem is clear in
the cases when 7 (G) = 1 (Gy).

3. FORMULATION OF SIEGEL’S THEOREM

Let S and T be square matrices with integral entries of size m and n,
respectively. We assume that both are positive definite. For any matrix x,
denote S [x] = ‘xSx (when defined). Let 4 (S, T) = the number of integral
m X n matrices x such that S [x] = 7. For each positive integer ¢, let
A, (S, T) = the number of integral m X n matrices x, mod ¢, such that
S [x] = T (mod q).

A positive definite integral matrix S’ 1s said to be in the same class as S
if S = S[U], for some Ue SL (m, Z). S’ is in the same genus as S if for
each ¢, there exists Ue SL (m,Z) such that S’ = S[U](mod g). Let
S, ..., S, be the representatives of the classes in genus (S). Let E (S;) = the
finite group consisting of all U ¢ SL (m, Z) such that &; [U] = §,, and put
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