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tinuous functions { /7 (¢) }, defined on the sets {¢; (G*)} and satisfying
the conditions

N
8) fG,9) = Y pi(x,0)f7 (a.(x,) for all (x,y)eG*;
=1
9) max max |f}()|>K max |f(x,))].
i teq; (G*) (x,y)eG*

Denote by F,, = F,,(G*,{p;},{4g,}) the set of superpositions f(x,y)
e F(G*, {p;},{4q;)) such that max |f(x,y)| < Je. By Theorem 5.2.1
(x,y) e G*

and (8), (9), there exist constants 4 and B such that if w (§) <(AAK)™*
then H,,; (F,,) < B(LK)?/5. Hence the functional dimension

1 K)2
og, log, 240?

r(F(G*, {p;},{q;}) <lim lim lim =1

Ao 020 -0 log,o

This proves the theorem.
From Theorem 5.3.1 and the properties of functional dimension (§ 1)
we have the following result, which is a stronger form of Theorem 4.6.1.

CorOLLARY 5.3.1. For any continuous functions {p;(x,y)} and
continuously differentiable functions { q;(x,y)} and every region D the
set of linear superpositions F (D, { p;},{ q;}) is nowhere dense in any space
of functions that has in every region G < D functional “dimension” greater
than 1.

Remark 5.3.1. All the results about linear superpositions of the form
N
> pi (%, ) fi (g; (x, »)) remain valid if we assume that { f; (¢) } are arbitrary
i=1

bounded measurable functions.

§ 4. Variation of superpositions of smooth functions

Let G, be a closed region of the space of the variables x,, x,, ..., X,
(n > 2). A function F(x) = F (x4, X5, ..., X,) 1s called a superposition of
order s generated by the functions of k& (k > 1) variables

Fovope (s oy s 1) (@=0,1,2, 0y 53 B =1,2, .., k)

if it is defined in G' by relations
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’ F :f(Q1>an "'an) >

-----------------------------

----------------------------

| 9B1.B20Bs+1 = y(B1.B2sesBs+1) 2

where y (B4, B2, ..., Bs+ ) is a function of the indices S, f,, ..., fs+1 and
takes one of the values 1, 2, ..., n. As before, we assume that the functions
{ @8y ps.....5, (T15 125 s 1) } are defined for all values of the arguments.

A superposition of any order, generated by functions of one variable,
is again a function of one variable. Therefore in this case (kK =1) we consider
superpositions of functions of one variable and the operation of addition,
that is, superpositions definable in the following way.

A function F(x) = F(xq, x5, ..., x,) (n>1) is called a superposition of
order s of the functions fp, ., (#) (@=0, 1, 2, ..., 5; §;=1, 2) if the following
relations are satisfied:

IEREE]

F = f(q;+4q5),

--------------------------------

9p1.820be = S 018208 (D120t T Dp1,posenfn2) - (VID)

...............................

8182, sBs+1 — N9(BLB2sBst+1) 2

where y (1, P2, ---» Ps+1) takes one of the values 1, 2, ..., n.

Note that we can represent as superpositions of the form (VII), for
example, all rational functions of xy, x,, ..., x, since we can write any
arithmetic operation by such superpositions, for example, u -v = ™+
- f(f1 (u) + 1> (v))

Let F (xy, x,, ..., X,) be a superposition of order s of the continuously

differentiable functions {-/bl,ﬂz,---,ﬂa (t1, 12, ..., ) } and  F(xq, x,, ..., X,
the superposition of the same form of the continuously differentiable func-

k
0 ty,...,1
[t = max Y sup UIRACE ’~~k)- ,
o, f1 fa =1 t 5tl
& = max sup ‘ (Plj’l ..... ﬂa(t17t2>'-->rk)l
%, B1,... Py t




.
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LEmMA 5.4.1. The inequality
su% ‘I;(xl,xz, e X)) = F (X, xp,00,x,) | <X A, 8)e.
holds, where the constant A (u, s) depends only on u and s.
Proof. We‘proceed by induction on s. For definiteness suppose that
k < 1. Having verified the statement of the lemma for s = 1 and having

made an appropriate inductive assumption for superpositions of order
s — 1, we have

su;(); | F (Xy, X0, 00 X)) — F(Xq, X5, 00, X,) |

(\‘/: ‘f(czl’ "':qwk) —'f(qla"'an)l + IQD(;DZIZa >;k)l

<. | max sup ]qﬁ1 ——q,,1| +e<lu-A(,s—1)e+e = A(u,s)e.

b1 xeG

(the last by the indictive assumption). This proves the lemma.
Further, let o (6) be the common modulus of continuity of all the func-

_ 0 iy by) , .
tions { IEAY k)} and, in addition, put

p ,
0 Ly oes )i
o = max Z sup _(P[fl ..... ﬁy_( 15 K)
o0 B1,..nfy i=1 ¢ at;
LEMMA 5.4.2. We have (for case k > 1)
Fxg,oo0n%)) = F(xy,.00,%,) = Z Doy (X1s X255 X,)
a, f1,.-s Ba

X (pﬂl,...ﬂa, (qﬂl ..... ﬁa,l (x19 Y xn)) cesy qﬁl ..... b’a’k (X1, saey xn))
+ R(X1,X5, .5 X,) »
where
| R(x1, %5, 0, x,) | < B(u, s, k) [¢' + (A, s)e)] e,
1

lpﬂl ..... ﬁa(xlaxza---axn) = H p
i=0 Cdpy,...piy1

B (u, s, k) is a constant depending only on u, s, k. For k = 1 the correspond-
ing equation is slightly different (see Chapter I, (1)) :
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= Z pﬂl ,,,,, ﬁa(x1>x29 ...,X”) @ﬁl,...,ﬁa(qﬂl....,ﬁa,l (xl’ ...,x,,)

Proof. As in the preceding lemma we proceed by induction on s.
Again for definiteness we limit ourselves to the case kK > 1. For s = 1
the assertion of the lemma is easily verified. We assume that it is true for
superpositions of order s — 1. By Lemma 5.4.1, for superpositions of
order s we have

F(xlr'-'axn "‘F(Xla"'axn) :f(C]la(Z29"'>Qk) _f(qla QZa'“a('Ik)

A ~ ~ ‘ k a ~
+ (@15 G20 s qi) = @(d1sq2s s @) + 2, o g —qp)
p1=1 04 py

+ A, e e +k-A(u,s)w (A, s)e)e.

Since gz, and g5, (B;=1,2, ..., k) are superpositions of order s — 1,
by the inductive hypothesis we have ‘

~ A
qﬁl - qﬁl = Z pﬂ] ..... ﬂa(XI:XZa .,.,X,,)
a>0
quﬂ:'},-'-,ﬂa

ST (Qﬁl ..... Barl (%op 5 By s, Bl o o3 dp1,....Bgk (X1, X2, .00, xn))

/
+ R (Xl, x?_: "-axn) >
where

| R(x{, %5, ..., x,) | <BGus—1,k)[¢' + o (A4 (u,s—1) e)] e,

N a—1 afﬂ P

4B, 2,...;ﬁi
Dgi.,.... /}a(xla“'axn) = H P
i=1 O04py,...pis1

(for a=1, ps, (x4, ..., x,) = 1). ~
When we now substative the expressions for the differences 98, — 4p,

in the formula for F — F above, we obtain the required representation of

the difference of two superpositions F — F. This proves the lemma.
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