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III. REDUITE TRANSJORDANIENNE DE f

A) Choix d’une premiére base de réduction. g, applique K" dans K.
Donc f = g, + A,e applique aussi K” dans K’. La matrice M traduisant f
sur la base (B) précédente sera formée de blocs diagonaux enchainés :
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Tous les éléments hors des blocs sont nuls; f* = base quelconque de K.

B) Construction de la réduite transjordanienne T de f. Le processus sera
expliqué sur un exemple; on considére pour chaque 4,, au lieu d’une base
quelconque ¥ de KV, une « base hiérarchisée » de K". Pour simplifier les
notations, I'indice v sera supprimé a I’occasion.

Supposons que pour la valeur propre (4,) on ait (pour g,):

les noyaux itérés K; <« K, « K; =« K, = K*, (p=4),
leurs dimensions d, = 4, d, = 6, d; =8, d, =9 =d, (d=r=9),
les sauts décroissants 6, = 4, 6, = 2, 6, = 2, §, = 1.

Le choix des vecteurs de base va s’exercer en partant de K, et remontant
vers Ky ; ces vecteurs seront numérotés dans ’ordre inverse de leur choix.

1°) Prenons 'un quelconque S, des supplémentaires de K5 dans K,
dim §, = 6, = 1. Dans S, prenons une base formée d’un vecteur &,.

2°) On sait que g (S,) = K3 et g(Sy) nK, = {0}. Par suite, K,
tg(S) =K, @9 (S4) =Kz Or dim [K,®g (Sl =d, + 6,4 < d,
+ 05 = d;. Cette inégalité établit que K, @ g (S,) est un sous-espace
strict de K. On choisit I'un quelconque Q des sous-espaces supplémentaires
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de K, ®g(S,) sur Ky; dimQ = d; — (d,+6,) = 65 — 0, = 1. S,
= g (S4) ® Q est un sous-espace supplémentaire de K, sur K;.

dim S3 = 54_ + (53_54) = 53 = 2.

On prendra pour base de S;: {eg = g (¢9), &; = Base de Q}.

3°) On part de S5 et 'on forme g (S5); dim g (S3) = 65 et g (S3)
<Ky, g9(S3) 0Ky ={0},9(S;) ®K, =6, +d; =0, +d, =d,,car
actuellement on a §; = §,. Donc g (S;) est un sous-espace supplémentaire
g(S3) =S, de K; sur K,; 85 > 0, avait nécessité I'introduction d’un
sous-espace  pour obtenir S; = Q @ g (S,); ici 6, = 5 et directement
S, = g (S5). On prendra comme base de S, les deux vecteurs (0,=2):
g = g (gg) et &5 = g (&7).

40) dim g (S,) = dim S, = 6, = 2; ¢(S,) est un sous-espace strict
de Ky, lequel a pour dimension d, = o, = 4. Prenons I'un quelconque
des supplémentaires ' de g (S,) sur K; (=5,), @ @ g (S,) = K, dim Q'
=0; — 0, = 2.

Prenons comme base de K; = S;: &4, €3, €3, &, OU &4 = g (&), €3
= g (¢&5), &, et &, formant une base quelconque de 2'. Au total sur la base
{ &1, €3, ..., €, & ; I'application g, de K dans K” (g,=f—A,e) se traduira
par le bloc T'" dit bloc transjordanien. On déduira de 7" le nouveau bloc
transjordanien 7" traduisant sur la méme base (base « canonique pour 4, »)
I’application f de K” dans K". Le passage de 7" a T se fera en remplagant
par A, les zéros de la diagonale principale de 7.
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Le processus indiqué est général. On construit dans I’ordre a partir de Sp,
supplémentaire arbitraire de K, _; sur Kj,.

Exemples des deux types extrémes de matrices transjordaniennes

A o /_ .
A 000 A, 1o 0
0 A, 0 0
0 0 Ao o o A, 4
° o A 0 0 0 A,
Ao A, 4
0 0 ¥ 0 0 3
0 A; 0 A?’
" J }
Tl TN
T’ = matrice diagonale T" =

= matrice « one by one step»
= réduite transjordanienne de f”
{ /113 )’23 127 /123 )~2> /’{3, /’{3 } .

—— -

= réduite transjordanienne de f”
/' et f” ont le méme spectre:

N, s/

Mais les profils sont

19 pour f'{d;i =1=d, = ry
{di =4 =d, =75}
{di =2 =d, = 73}
Tous les indices = 1
29 pour f"{dy =d; =r}
{di = 1,d5 =2,d% =3,d> = 4 = dy =1y}
{d; = 1,d; =2 = dy = r3}
Tous les sauts = 1
Remarque. Si chaque valeur propre est racine simple de I’équation
caractéristique

S = n ou I‘1=l”2=...“

la transjordanienne est a la fois « diagonale » et « one by one step ».
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