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III. Réduite transjordanienne de /
A) Choix d'une première base de réduction. gv applique Kv dans Kv.

Donc / gv + Xve applique aussi IC dans Kv. La matrice M traduisant /
sur la base (ß) précédente sera formée de blocs diagonaux enchaînés :
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Tous les éléments hors des blocs sont nuls;

Blocs

M1 : matrice (r1? rx)
M2: matrice (r2, r2)

Ms: matrice (rs, rs)

base quelconque de Kv.

B) Construction de la réduite transjordanienne T de f Le processus sera

expliqué sur un exemple; on considère pour chaque Àv, au lieu d'une base

quelconque ßv de Kv, une «base hiérarchisée» de Kv. Pour simplifier les

notations, l'indice v sera supprimé à l'occasion.
Supposons que pour la valeur propre (2V) on ait (pour gv) :

les noyaux itérés Kt a K2 c: K3 c Kv, (p 4),

leurs dimensions d1 4, d2 6, d2 8, 9 d, (d=r 9),

les sauts décroissants ôx =4, S2 2, S3 2, S4 1.

Le choix des vecteurs de base va s'exercer en partant de K4 et remontant
vers Kx; ces vecteurs seront numérotés dans l'ordre inverse de leur choix.

1°) Prenons l'un quelconque S4 des supplémentaires de K3 dans K4,
dim S4 S4 1. Dans S4 prenons une base formée d'un vecteur s9.

2°) On sait que g (S4) c= K3 et g (S4) n K2 {0}. Par suite, K2
+ g (S4) K2 © g (S4) c K3. Or dim [K2@g (S4)\ d2 + ô4 < d2
+ (53 d3. Cette inégalité établit que K2 © g (S4) est un sous-espace
strict de K3. On choisit l'un quelconque Q des sous-espaces supplémentaires
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de K2 © g (S4) sur K3; dim Q d3 - (d2 + ö4) <53 — <54 1. S3

g (S4) © Q est un sous-espace supplémentaire de K2 sur K3.

dim S3 (54 + (<53 — (54) — ô3 — 2

On prendra pour base de S3 : {s8 g (e9), s7 Base de Q}.

3°) On part de S3 et l'on forme g (S3); dim g (S3) ô3 et g (S3)

a K2, g (S3) nK1 { 0 }, g (S3) ® K1 ô3 + d1 ô2 + d2, car
actuellement on a <53 ô2. Donc g (S3) est un sous-espace supplémentaire
g (S3) S2 de K1 sur K2 ; <53 > <54 avait nécessité l'introduction d'un

sous-espace Q pour obtenir S3 Q © g (S4); ici ô2 ô3 et directement

^2 g (S3). On prendra comme base de S2 les deux vecteurs (<52 2):

H g (e8) et z5 g (e7).

4°) dim g (S2) dim S2 ô2 2; $(<S2) est un sous-espace strict
de Ku lequel a pour dimension ô± =4. Prenons l'un quelconque
des supplémentaires Q' de g (S2) sur K1 S1), Q' © g (S2) K1, dim Q'

Ô1 - ô2 2.

Prenons comme base de Kt St : e4, e3, e2, 81? où s4. g (s6), s3

g (^5), ßi et s2 formant une base quelconque de £2'. Au total sur la base

{ s1, e2, fî8, 89 } l'application de Kv dans Kv (gv=f— 2ve) se traduira

par le bloc T'v dit bloc transjordanien. On déduira de T'v le nouveau bloc

transjordanien Tv traduisant sur la même base (base « canonique pour 2V »)

l'application/de Kv dans Kv. Le passage de T'v à Tv se fera en remplaçant

par 2V les zéros de la diagonale principale de T'v.
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Matrice T,v (gv restreinte à Kv)

"A "1 " " ^
Matrice Lv (/ restreinte à Kv)
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Le processus indiqué est général. On construit dans l'ordre à partir de Sp

supplémentaire arbitraire de KPv_ x sur KPv.

Exemples des deux types extrêmes de matrices transjordaniennes
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réduite transjordanienne deff et/" ont le même spectre:

T"

T" matrice « one by one step»
réduite transjordanienne de f"

{ ^2» ^2> ^2? & 2, 23, 2 3 }

Mais les profils sont

1°) pour f { d\=1 dA î"! }

{ d\ 4 d2 r2 }

{ 2 d3 r3 }
Tous les indices 1

2°) pour f" {d\ di r1}

{dj l,d22 2 ,d\3,dl 4 d2 }
{d? l.dl 2 d3 r3}

Tous les sauts 1

Remarque. Si chaque valeur propre est racine simple de l'équation
caractéristique

s n ou r1 — r2 — rn 1

la transjordanienne est a la fois « diagonale » et « one by one step ».
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