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The Whitehead product theory for ex-spaces has been worked out by

Eggar [4]. His definition is such that if A, B, Y are as in §2 and a e nG

(IA, Y), ß e nG (IB, Y) then

(4.1) =P#l">ßl
in 7ix(l (P#AaP#B),P#Y). Since we shall only be concerned with
elements in the image of P# we can introduce (4.1) as a piece of notation,

without going into the details of Eggar's theory.

5. The register theorem

In this section we suppose that X is a finite simply-connected C IE-

complex, although the results obtained can no doubt be generalized. We

define the register reg (X) of X to be the number of positive integers r
such that, for some abelian group A, the cohomology group Hr (X; A)
is non-trivial. If X is a sphere, for example, then reg (X) 1.

Let p: M -» X be a fibration with fibre N. If a cross-section s\ X -* M
exists then sp: M -> M is a fibre-preserving map which is constant on the

fibre. Conversely if k: M -» M is a fibre-preserving map which is nul-

homotopic on the fibre then M admits a cross-section as shown by Noakes

[11]. We use similar arguments to prove

Theorem (5.1). Let k: M - M be a fibre-preserving map such that
I: N N is nulhomotopic, where I k\N, and let s, t : X -> M be

cross-sections. Then krs and krt are vertically homotopic, where r reg(X).

The n-section (n 0, 1, of the complex X is denoted by Xn. Since X
is connected we have a vertical homotopy of £ into t over X°. This starts an
induction. Suppose that for some n > 1 and some q q (n) > 1 we have

a vertical homotopy of kqs into kqt over Xn~x, so that the separation class

d d (kqs, kqt) e Hn (X; nn (N))

is defined. If the cohomology group vanishes then d 0 and kqs ~ kqt

over I". But in any case the induced endomorphism of nn (N) is trivial,
by hypothesis, and so d lies in the kernel of the coefficient endomorphism /#
determined by /Hs. Therefore

d(kq+1s,kq+1t) l#d 0,
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and so kq + 1s ~ kq+1t over X'\ Hence, by induction, we obtain (5.1). Of
course the value of r can often be improved in particular cases.

Corollary (5.2). Let E be a fibre bundle over X with locally compact
fibre F, which admits a cross-section. Choose a cross-section and so regard
E as an ex-space. Let f : E -> E be an ex-map such that g: F F is nul-

homotopic, where g — f\F. Then /r+1 ^ c, the trivial ex-map, where

r - reg (X).
To see this, take M MX(E,E), in (5.1), and define k: M -> M by

post-composition with /. We take s, t to be the cross-sections f',e'\ X
M determined by /, e, and obtain (5.2).
Now let a, ß e 7ix (E, E) be elements such that

(i) a2 ß2 and aß ßa,

(ii) - $*ß9

where nx (E, E) n (E, E) is given by restriction. Suppose that
E IE', for some ex-space E', and that a I^a', ß I*ß', for some
a', ß' e nx (E', E'). Take / in (5.2) to be a representative of a — ß. Then
fr+1 is a representative of (a-ß)r+1 2r (pu —ß) ar, and so (5.2) shows that

(5.3) 2ra 2rß

Applications will be given in §8 below.

6. The exact sequence

Let X be a CW-complex with basepoint x0 a 0-cell. Let p: M -> X be a

fibration with fibre N (x0), and let T denote the function-space of
cross-sections. By evaluating at x0 we obtain a fibration q: T -> A. It may
be noted that, under fairly general conditions, this fibration admits a cross-
section if and only if the original fibration is trivial, in the sense of fibre

homotopy type.
Now choose a basepoint y0 e N so that q~l (y0) T0, the space of

pointed cross-sections. Choose such a cross-section s as basepoint in T0

c= JH, and consider the homotopy exact sequence of the fibration as follows:

-> 7lr+1 (N) -> 7lr(r0) -> 7Tr(r) nr(N) ->

Note that T0 is a deformation retract of T0, the space of pointed maps
t : X M such that pt ~ 1.
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