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2. DETERMINATION OF THE EXTREME RAYS OF W

Inspired by [6] we consider the Green’s function

(1=x)t for 0=<t<x
(I—-t)x for O0ZxZ<t

L,

G(x,t) =
N ) { 1.

A IIA

If ¢ 1s a continuous function on [0, 1] the unique solution fe C ([0, 1])
~ C?(]0, 1]) to the equations

(2.1) fr= —in]0,1[, £(0) =f(1) =0
1S
(2.2) Fx) = J G (x, 1) (t)dt .

0

The successive iterates of G are defined for x, 7 € [0,1] by the equations

Gi(x,t) = G(x,t)

1
G,(x,t) = f G(x,9) G,y (y,t)]dy, n=2.

0

It is clear that G, (x, t) = O for x, t € [0, 1].
We define recursively a sequence of polynomials (A4,), > ') by the
requirement

(23) AO (X) = X, A;; = _An—l and An(o) = An(l) =0
for n=1.

The polynomial A, is of degree (2n + 1), and we clearly have

0 0

n=1, xe[0,1].

It follows that A4, = 0 on [0, 1] for all n, and since (—1)*4,%% = A, _, for
k < n we see that A4, e W.

We recall that a ray R, x of a cone C is called extreme, if an equation
x = f+ g with f, g € C is possible only if f, g € R, x, cf. [3].

(2.4) A,(x) = j G(x,t) A, (1)dt = JlGn(x,t)tdt for

1) Qur terminology is different from that of [6]; (—1)"4,, isequal to the n’th Lidstone
polynomial of [4] and [6].
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PROPOSITION 2.1. The polynomial& A, n =0, lie on extreme rays of W.

Proof. If Ay, = f + g with f,ge W we have 0 = f" + ¢”, but since
/" and g” are both < 0, we conclude that f and g are affine. Furthermore,
since f(0) = g(0) = 0, we conclude that /' and g are proportional to A,.

Suppose now that 4,_,, » = 1, lies on an extreme ray of W, and assume
that A, = f+ g where f,ge W. Then A,_, = —f" + (—g"), and the
induction hypothesis implies that — f” and — g” are proportional to 4, _;.
Therefore we have f = 14, (x) + ax + b for certain numbers A = 0, a, b.
Since 0 < f < 4, we have £(0) = f(1) = 0 which implies thata = b = 0.
This proves that f (and similarly g) are proportional to A, which then lies
on an extreme ray of W. ‘

Since f+ f* is an affine isomorphism of W the polynomials A also lic
on extreme rays of W. The following result is a special case of [6],
Theorem 1.1.

ProPOSITION 2.2. Every function fe W can for n = 1 be written as
n—1

Sy = 2 (=DE0) A (x) + (= DO 4,(x)) + R, (x),

k=0
where

R,(x) = f G, (x, ) (=)' fC()dte W.

0
Proof. For n = 1 the formula is equivalent with

1
(2.5) f() =fO)(A-x) —f(1)x = Ry (x) = — f G(x,0)f"(1)dt,

which follows directly from (2.2), and it is clear that R, € W.

Suppose now the formula holds for some n = 1. Applying (2.5) to
(=173 e W we get

(=1 S (x) = (=1)"fE0) AT (x) + (= 1D"f @ (1) A, (x)
+ f G(X,If)(—l)'1+1f(2'l+2)(t) dt,

which substituted in the expression for R, yields the formula for n+ 1
because of (2.4).

To see that R, € W we notice that
1

(_ 1)kRn(2k) (X) — J‘() Gn—-k ('xa t) ( — l)nf(Zn) (t) dt for 0 é k é n—1

(= DFf 0 (x) for k=>n.
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The following lemma is easy to establish, but instead of giving the proof
here we refer to [6].

LemMma 2.3. There exists a constant M > 0 such that

1
M
O_S__J\ G,(x,t)dt £ for 0=x=1,n2=1.

a 71:2;1

PROPOSITION 2.4. The only functions fe W satisfying f*9 (0)
=fCO 1) =0 forall k=0 are f(x) = asin(nx) with a = 0.

Proof. Suppose fe W satisfies £** (0) = f©@¥ (1) = 0 for all k = 0.
Defining @ = sup {« 2 0| f—a sin (nx) e W}, g = f — a sin (nx)
belongs to W because W is closed in R!. Furthermore

g @ 0) =g @ (1) =0forall k = 0.

Let ¢ > 0 be given. Since ¢ = g —e¢ sin (nx) ¢ W, there exist k = 0
and x, €10, 1[ such that (—1) *¢®* (x,) < 0, hence

(=1 g (xy) < en?®* sin (nx,) .
By Lemma 1.2 (iii) applied to (—1)*¢®* we get
(=1Yg@® () < en®*t  for O0<t<1,

and therefore by Proposition 2.2 and Lemma 2.3 for 0 < x < 1

1

g (x) = Jl Gy (x, ) (= D@ (1) dt < en®* ™! j Gy (x,1) dt

0 0
< eMm.

This proves that g is identically zero.

PRrROPOSITION 2.5. The extreme rays of W are precisely the rays
generated by A, and A}, where n = 0, and sin (nx).

Proof. We first show that sin (nx) lies on an extreme ray. If sin (7x)
= f+g where f,ge W, we have f(0) =f(1) =¢g@0) =g() =
Differentiating 2k times we similarly get f@% (0) = £ (1) = g Z¥(0)
= g©®®(1) = 0, and it follows by Proposmon 2.4 that f and g are pro-
portional to sin (7x).

We finally have to show that an arbitrary extreme ray is generated by
one of the above functions.
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Assume that /'€ W generates an extreme ray. If £ ?0(0) = f©@(1) = 0
for all k = 0 we already know by Proposition 2.4 that f is proportional to
sin (nx). Otherwise let n be the smallest number = 0 for which f?”(0) # 0
or £ (1) # 0. By Proposition 2.2 we then have

f(x) = (=D"fC0) A} (x) + (=1)"fE (1) 4,(x) + Rysy (%),

but since f lies on an extreme ray all three terms on the right-hand side lie
on this ray.

If £"(0) # 0 this shows that (—1)"f *"(1)4, and R, ; are proportional
to A¥. Therefore f@"(1) = 0 and R'%¥"® = f£(3*2) i5 proportional to
(AT)P"*2) = 0, so that £®"*2) = 0 and hence R,,; = 0 (cf. Proposition
2.2).

If £ @™ (1) 0 we similarly get f*” (0) = 0 and R,,; = 0. This shows
that f lies on the ray generated by either A7 or 4,.

3. DETERMINATION OF A BASE FOR W

There are several ways of determining a base for . We choose the
following set

B = {fer flf(x) sin (nx)dx = 1}.
8

By Lemma 1.2 (i1) we get for fe B and x, € ]0, 1] that

1 = —1~f(xo) f sin® (nx)dx = ~1—f(xo),
T 0 27

so the functions in B are uniformly bounded by 2x.

It is therefore clear that B is a compact convex base for W.

The extreme points of B are exactly the intersections between B and the
extreme rays of W. We see that 2 sin (nx) € B.

We claim that the following formulas hold, cf. [4]:

o0

| 2
(B AF(x) = p—)
! k

=1

sin (knx)
k2n+ 1

, =0, xe]0, 1] ,

2 2 sin (knx
£ 32 4, = TS Y (=1t —],Zr(n+1 )~, n>0,xe]0,1[.

k=1
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