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2. Determination of the extreme rays of W

Inspired by [6] we consider the Green's function

(1 — x) t for 0 ^ t < x ^ 1

(1—0x for 0 ^ x ^ / ^ 1

G fx, t)

If cp is a continuous function on [0, 1] the unique solution f e C ([0, 1])
C2 Q0, 1[) to the equations

(2.1) f" -(p in ]0, 1[ /(0) =/( 1) 0

(2.2) /(*) G(x, t)cp{t)dt.

The successive iterates of G are defined for x, t e [0,1] by the equations

Gt (x, t) G (x, t)

Gn(x, t) G(x,y)Gn_1(y,t)']dy n > 2

It is clear that Gn (x, t) ^ 0 for x, t e [0, 1].

We define recursively a sequence of polynomials (An)n > 0 0 by the

requirement

(2.3) /l0(x) x,4i -A-i and /Ln(0) /ln(l) 0

for n ^ 1

The polynomial is of degree (2ft + 1), and we clearly have

(2.4) An(x) G (x, t) An_1 (0 dt Gn(x,t)tdt for

n ^ 1 x e [0, 1]

It follows that An ^ 0 on [0, 1] for all n, and since (—l)fcyin(2/c) An_k for
/c ^ ft we see that An e W.

We recall that a ray R+x of a cone C is called extreme, if an equation

x f+ g with f,geC is possible only if f, g e R+x, cf. [3].

x) Our terminology is different from that of [6] ; (— ifA n is equal to the n'th Lidstone
polynomial of [4] and [6].
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Proposition 2.1. The polynomials A„, n ^ 0, lie on extreme rays of W.

Proof If A0 f + g with fgeW we have 0 f" + g\ but since

f" and g" are both g 0, we conclude that/ and g are affine. Furthermore,
since /(0) #(0) 0, we conclude that / and g are proportional to A0.

Suppose now that AfJ_1, n > 1, lies on an extreme ray of W, and assume

that An f + g where fgeW. Then An_t —f" + (—#")> and ^ie
induction hypothesis implies that — f" and — g" are proportional to A„_1.
Therefore we have / XA„ (v) + ax + b for certain numbers X ^ 0, a, b.

Since 0 Sf S An, we have/(0) /( 1) 0 which implies that a b 0.

This proves that / (and similarly g) are proportional to An which then lies

on an extreme ray of W.

Since/1->/* is an affine isomorphism of Wthe polynomials A* also lie
on extreme rays of W. The following result is a special case of [6],
Theorem 1.1.

Proposition 2.2. Every function f e W can for n ^ 1 be written as

m "l - l)V(2ft>(0) A X (x) + - l)fc/(2fc)(l) A + R„ (x)

when

R„(x) G„(x,t)(-\)"f(2"\t)dteW.

Proof. For n 1 the formula is equivalent with

(2.5) f(x)-/(0)(l-x) -/(l)x - G ix, t)f" it) dt,

which follows directly from (2.2), and it is clear that e W.

Suppose now the formula holds for some n f 1. Applying (2.5) to
(~ îyy'2'0 e W we get

C- l)"/(2")(x) (-1 )"f(2n)(0)A*ix)

Gix,t)i-1 )" + 1f(2n+2)it)dt,

which substituted in the expression for R„ yields the formula for n + 1

because of (2.4).
To see that Rn e W we notice that

»1

(x, t) i - 1 )«/<2"> (f) dt for 0 ^ n 1

i-lff^ix) for k

L'Enseignement mathém., t. XXIII, fasc. 3-4. 13
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The following lemma is easy to establish, but instead of giving the proof
here we refer to [6].

Lemma 2.3. There exists a constant M > 0 such that

0 <
l M

Gn (x, t) dt tk - -2- for n ^ 1

Proposition 2.4. The only functions feW satisfying /(2/c) (0)
/(2/c) (1) 0 for all k ^ 0 are f(x) a sin (nx) with a 0.

Proof. Suppose feW satisfies /(2/c) (0) /(2*} (1) 0 for all k ^ 0.

Defining a « sup { a ^ 0 | /—a sin (nx) e Wj, g / — ß sin (7ix)

belongs to IF because H7 is closed in R1. Furthermore

g {2k) (0) g
(2/c) (1) 0 for all k ^ 0.

Let s > 0 be given. Since (p — g — s sin (nx) $ W, there exist k ^ 0

and x0 e ]0, 1[ such that (—1) fc<p(2ft) (x0) < 0, hence

— l)kgi2k) (x0) < 87i2k sin (nx0)

By Lemma 1.2 (iii) applied to (—1 )kg(2k) we get

(~l)kg(2k)(t) ^ en2k+1 for 0 < t < 1,

and therefore by Proposition 2.2 and Lemma 2.3 for 0 < x < 1

g (x)
l

2k+ 1

*1
0

G* (x, t) — l)kg(2k) (t) g en

^ sMn

This proves that # is identically zero.

l
Gk (x, t)dt

Proposition 2.5. The extreme rays of W are precisely the rays
generated by An and A*, where n ^ 0, and sin (nx).

Proof. We first show that sin (nx) lies on an extreme ray. If sin (nx)

f + g where fgeW, we have /(0) /(1) g (0) g (1) 0.

Differentiating 2k times we similarly get /(2/c) (0) /(2k) (1) g (2k)(0)

g{2k\l) 0, and it follows by Proposition 2.4 that / and g are

proportional to sin (nx).
We finally have to show that an arbitrary extreme ray is generated by

one of the above functions.
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Assume that fe IL generates an extreme ray. Iff(2k\0) f(2k){ 1) 0

for all k ^ 0 we already know by Proposition 2.4 that /is proportional to
sin (nx). Otherwise let n be the smallest number ^ 0 for which f{2n\0) 0

or f{2"\ 1) A 0. By Proposition 2.2 we then have

f(x) (-1)V(2,,)(0)A*n(x) +(-irfw(\)An(x)+Rn+1(x),
but since /lies on an extreme ray all three terms on the right-hand side lie

on this ray.
If/(2'°(0) A 0 this shows that (— \)nf{2n)(\)An and Rn + 1 are proportional

to A*. Therefore f(2n)( 1) 0 and R{n2ff2) f(2n + 2) is proportional to
(/l*)(2', + 2) 0, so that/(2,,+2) 0 and hence + 1 0 (cf. Proposition
2.2).

If/(2,,) (1) A 0 we similarly get/(2n) (0) 0 and i?n + 1 0. This shows

that /lies on the ray generated by either A* or An.

3. Determination of a base for W

There are several ways of determining a base for W. We choose the
following set

B <feW\ fix) sin (tlx) dx

By Lemma 1.2 (ii) we get for fe B and x0 e ]0, 1[ that

i:

isin2 (nx)dx —/(x0)
o 2tt

so the functions in B are uniformly bounded by 2n.
It is therefore clear that B is a compact convex base for W.
The extreme points of B are exactly the intersections between B and the

extreme rays of W. We see that 2 sin {nx) e B.
We claim that the following formulas hold, cf. [4]:

_ i * 2 sin (knx)M An& -ZSThï I -jàïT1' «^0,xe]0,l[,71 k =1 K

(3.2) AM
71 k 1 /v
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