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(tid'u ...,tna'n) (a'i e Ah t{ el)
where t\ A + t\ ** 1. The radius vector through (tu tn) meets the

boundary of the «-cube ln in a point (x1? xn)9 say, where at least one

coordinate is equal to 1. Thus a pointed G-homotopy equivalence

I *A) TT; a A ZAn
is given by

l((tia'l9,..9tna'n)9s) ((^,«0, ...,(5x„,a,,)).

I Clearly / is equivariant with respect to the action of the symmetric group
[ on the suspension of the multiple join and on the multiple smash product.
I In particular, take G O (m) and At Sm~1, for all i. Let « be a

I] permutation of the multiple join and v the corresponding permutation of
I the multiple smash product. We distinguish cases according as to whether

I the degree of the permutation is even or odd. In the even case u is G-homo-

I topic to the identity ln on the «-fold join, using elementary rotations as

I before, and hence v is pointed G-homotopic to the identity 1„ on the «-fold
p smash product. In the odd case it follows similarly that u is G-homotopic
iV;

~

A
\\ to 1„_ pT/, hence v is pointed G-homotopic to \n_x a a. Taking « 3,

I therefore, we see that the automorphisms which appear in (2.2) are trivial,
jr in this example, and so

I'
^ im, fZ.j,im, zw]] 0

I in nG (S3m+\ sm + 1), where im denotes the pointed O (m)-homotopy class

I of the identity on Sm. It is easy to see, incidentally, that the Whitehead
I square [£*/,„, E*im] e nG (S2m + l, Sm + 1) is of infinite order, for all m >2.

i

4. Ex-homotopy theory

For our second example of an alternative homotopy theory we take the
category of ex-spaces (see [7] for details), which is an enlargement of the
category of sectioned bundles mentioned earlier. We recall that, with regard
to a given space X, an ex-space consists of a space E together with maps

a p
X -+ E -* X

such that pa 1. We refer to p as the projection, to a as the section, and
to (p, a) as the ex-structure. Let £; (/= 1, 2) be an ex-space with ex-structure
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(Pi, <Ji). We describe a map/ : Et -» E2 as an ex-map if/c^ a2, p2f Pu
as shown in the following diagram.

Ti \ Pi

/
//
Pi

In particular we refer to c <r2 Pi as the trivial ex-map. We also describe a

homotopy ht: E1 -» E2 as an ex-homotopy if ht is an ex-map throughout.
The set of ex-homotopy classes of ex-maps is denoted by tzx(E1,E2) and
the class of the trivial ex-map by 0.

In particular, suppose that Et is a sectioned bundle with locally compact
fibre. For each point xe X the fibre p71 (x) is equipped with basepoint
<Tf (x). Consider the fibre bundle M Mx (Eu E2) which is formed, in the
usual way (see [2]) from the function-spaces of pointed maps p^1 (x)

P21 (*)• To each ex-map / : Ex -+ E2 there corresponds a cross-section

f : X -+ M, where /' (x) is given by the restriction of/ to the fibre over x,
and conversely every such cross-section determines an ex-map. We shall

exploit this correspondence in the next section.

Now let P be a principal C-bundle over X, where G is a topological
group. For any pointed G-space A the pointed G-bundle P#A can be

regarded as an ex-space, and similarly with pointed G-maps. Thus P#
constitutes a functor from the category of pointed G-spaces to the category
of ex-spaces, and determines a function

P#'7tG(A 1, A2) — nx(El, E2)

where At (i= 1, 2) is a pointed G-space and Et P#At. Of course, in general

P# is neither injective nor surjective.
As we have seen in § 1 a functor F in the category of pointed G-spaces

defines a functor F in the category of sectioned G-bundles ; in many cases

such a functor can be extended to the category of ex-spaces. For example,
the suspension functor I and the loop-space functor Q can be so extended,
also the binary functors product x wedge v, and smash a Similarly the

notions of Hopf ex-space, etc. ; can be introduced, following the standard
formal procedure, so that P# Transforms Hopf G-spaces into Hopf ex-

spaces, and so forth. Note that IE is cogroup-like and QE group-like, for any
ex-space E.



— 229 —

The Whitehead product theory for ex-spaces has been worked out by

Eggar [4]. His definition is such that if A, B, Y are as in §2 and a e nG

(IA, Y), ß e nG (IB, Y) then

(4.1) =P#l">ßl
in 7ix(l (P#AaP#B),P#Y). Since we shall only be concerned with
elements in the image of P# we can introduce (4.1) as a piece of notation,

without going into the details of Eggar's theory.

5. The register theorem

In this section we suppose that X is a finite simply-connected C IE-

complex, although the results obtained can no doubt be generalized. We

define the register reg (X) of X to be the number of positive integers r
such that, for some abelian group A, the cohomology group Hr (X; A)
is non-trivial. If X is a sphere, for example, then reg (X) 1.

Let p: M -» X be a fibration with fibre N. If a cross-section s\ X -* M
exists then sp: M -> M is a fibre-preserving map which is constant on the

fibre. Conversely if k: M -» M is a fibre-preserving map which is nul-

homotopic on the fibre then M admits a cross-section as shown by Noakes

[11]. We use similar arguments to prove

Theorem (5.1). Let k: M - M be a fibre-preserving map such that
I: N N is nulhomotopic, where I k\N, and let s, t : X -> M be

cross-sections. Then krs and krt are vertically homotopic, where r reg(X).

The n-section (n 0, 1, of the complex X is denoted by Xn. Since X
is connected we have a vertical homotopy of £ into t over X°. This starts an
induction. Suppose that for some n > 1 and some q q (n) > 1 we have

a vertical homotopy of kqs into kqt over Xn~x, so that the separation class

d d (kqs, kqt) e Hn (X; nn (N))

is defined. If the cohomology group vanishes then d 0 and kqs ~ kqt

over I". But in any case the induced endomorphism of nn (N) is trivial,
by hypothesis, and so d lies in the kernel of the coefficient endomorphism /#
determined by /Hs. Therefore

d(kq+1s,kq+1t) l#d 0,
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