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where tZ + ... + ¢t2 = 1. The radius vector through (¢, ..., #,) meets the
boundary of the n-cube I" in a point (xy, ..., X,), say, where at least one
coordinate is equal to 1. Thus a pointed G-homotopy equivalence

LY (A* .. %A) > ZA, A ... A ZA,
is given by
[((tyays o tyay) , s) = ((sX1, a1), ..., (5X,, a,)) .

Clearly / is equivariant with respect to the action of the symmetric group
on the suspension of the multiple join and on the multiple smash product.

In particular, take G = O (m) and 4, = S™ !, for all i. Let u be a
permutation of the multiple join and v the corresponding permutation of
the multiple smash product. We distinguish cases according as to whether
the degree of the permutation is even or odd. In the even case u is G-homo-
topic to the identity 1, on the n-fold join, using elementary rotations as
before, and hence v is pointed G-homotopic to the identity 1, on the n-fold

smash product. In the odd case it follows similarly that u is G-homotopic

to 1,_,*a, hence v is pointed G-homotopic to 1,_; A a. Taking n = 3,
therefore, we see that the automorphisms which appear in (2.2) are trivial,
in this example, and so

(33) 3 [Z*Ima [Z* L Z*lnr]] =0

in 7g (S, §™*1), where 1,, denotes the pointed O (m)-homotopy class
of the identity on S™. It is easy to see, incidentally, that the Whitehead
square [0, Zyl,] € g (ST, S™* 1} is of infinite order, for all m >2.

4. EX-HOMOTOPY THEORY

For our second example of an alternative homotopy theory we take the

category of ex-spaces (see [7] for details), which is an enlargement of the
g category of sectioned bundles mentioned earlier. We recall that, with regard
to a given space X, an ex-space consists of a space E together with maps

X 5 E S x

such that po = 1. We refer to p as the projection, to ¢ as the section, and
B (0 (p, o) as the ex-structure. Let E; (i=1, 2) be an ex-space with ex-structure
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(pi, 0;). Wedescribe amap f: E; — E, asan ex-map if fo, = 0,, p, f = py,
as shown in the following diagram.

oy . Ei < py
g

v N
X f X

AN A
LN ¥ S/

\4
%) E, / P2

In particular we refer to ¢ = o, p, as the trivial ex-map. We also describe a
homotopy A,: E; — E, as an ex-homotopy if h, is an ex-map throughout.
The set of ex-homotopy classes of ex-maps is denoted by 7y (E,, E,) and
the class of the trivial ex-map by 0.

In particular, suppose that E; is a sectioned bundle with locally compact
fibre. For each point x € X the fibre p;' (x) is equipped with basepoint
o; (x). Consider the fibre bundle M = M, (E, E,) which is formed, in the
usual way (see [2]) from the function-spaces of pointed maps pi’* (x)
— p3 ' (x). To each ex-map f: E, —» E, there corresponds a cross-section
f': X - M, where f' (x) is given by the restriction of f to the fibre over x,
and conversely every such cross-section determines an ex-map. We shall
exploit this correspondence in the next section.

Now let P be a principal G-bundle over X, where G is a topological
group. For any pointed G-space A the pointed G-bundle P,A can be
regarded as an ex-space, and similarly with pointed G-maps. Thus P
constitutes a functor from the category of pointed G-spaces to the category
of ex-spaces, and determines a function

Pying (A, Ay) > nx(E(LEy),

where 4; (i=1, 2) is a pointed G-space and E; = P_A4,. Of course, in general
P, is neither injective nor surjective.

As we have seen in § 1 a functor F in the category of pointed G-spaces
defines a functor F in the category of sectioned G-bundles; in many cases
such a functor can be extended to the category of ex-spaces. For example,
the suspension functor 2 and the loop-space functor Q2 can be so extended,
also the binary functors product x, wedge v, and smash A. Similarly the
notions of Hopf ex-space, etc.; can be introduced, following the standard
formal procedure, so that P transforms Hopf G-spaces into Hopf ex-
spaces, and so forth. Note that XF is cogroup-like and QF group-like, for any
ex-space E.

|
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The Whitehead product theory for ex-spaces has been worked out by
Eggar [4]. His definition is such that if 4, B, Y are as in §2 and o € 1
(ZA, Y), feng (2B, Y) then

(4.1) [P#O‘»P#ﬁ] = Py [“aﬁ]

in ny (X (PxAANP4B),P,Y). Since we shall only be concerned with ele-
ments in the image of P we can introduce (4.1) as a piece of notation,
without going into the details of Eggar’s theory.

5. THE REGISTER THEOREM

In this section we suppose that X is a finite simply-connected C'W-
complex, although the results obtained can no doubt be generalized. We
define the register reg (X) of X to be the number of positive integers r
such that, for some abelian group A, the cohomology group H" (X; A)
is non-trivial. If X is a sphere, for example, then reg (X) = 1.

Let p: M — X be a fibration with fibre N. If a cross-section s: X —» M
exists then sp: M — M is a fibre-preserving map which is constant on the
fibre. Conversely if k: M — M is a fibre-preserving map which is nul-
homotopic on the fibre then M admits a cross-section as shown by Noakes
[11]. We use similar arguments to prove

THEOREM (5.1). Let k: M — M be a fibre-preserving map such that
[: N — N is nulhomotopic, where | = k|N, and let s,t: X —- M be
cross-sections. Then k"s and k"t are vertically homotopic, where r = reg (X).

The n-section (n=0, 1, ...) of the complex X is denoted by X". Since X

- is connected we have a vertical homotopy of s into # over X°. This starts an

induction. Suppose that for some n > 1 and some g = g (n) >>1 we have

 a vertical homotopy of k% into k%t over X"~ !, so that the separation class

d = d(K's, k't e H" (X; 7, (N))

is defined. If the cohomology group vanishes then d = 0 and k%s ~ k%

L over X". But in any case the induced endomorphism /, of 7, (V) is trivial,

by hypothesis, and so d lies in the kernel of the coefficient endomorphism /..
¢ determined by /,. Therefore

d(k s, k) = 1,d =0
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