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1 0
A = min inf  A(t, G, q;, {pf)) > imin {5, min AJ}.

J=i teqj(Gy) J<i

Thus, the regular regions' Gy, G,, ..., G, can be constructed. The regular
region G = G, satisfies all the requirements of our lemma (1=21,), which
i1s now proved.

§ 5. The set of linear superpositions in the space
of continuous functions is closed

THEOREM 4.5.1. Suppose that continuous functions p,, (x,y) and
continuously differentiable functions q,, (x,y) (m=1,2,..., N) are fixed.
Then in any region D of the plane of the variables x, y. there exists a closed
subregion G < D such that the set of superpositions of the form

N

Y P (X ¥) oo (@ (X, ),

m=1
where {f,, (t)} are arbitrary continuous functions, is closed (in the uniform
metric) in the set of all functions continuous on the set G.

By Lemma 4.2.2 and 4.4.3 we can find a subset G < D, determine cons-
tants y > 0 and A > 0, and renumber the functions {p, (x,»)} and
{ ¢ (x, y) } with two indices so that the functions obtained after the renum-
bering, {pi(x,»)} and {q¢%(x,»)} (i=0,1,2,...,n; k=1,2,..,my;

Y m; << N) that is, some functions may be omitted in the renumbering)
i=0

satisfy conditions (1), (2), (3) of Lemma 4.2.2, and also the conditions:

(4') for any continuous functions {f, (#)} there exists continuous
functions { f%(¢) } such that on G

Y pn (60 ulan () = 3 3 pECe S 0k (5, 2):

i=0

(5') for every i and 7€ ¢} (G) and for any functions { £ (¢) }

max | Y pr(x, 0 fi(qi (x, )| = A max |[fi(0)];
(x,y)ee(q %,t)nG = k

(6) G is a regular region with respect to the functions { ¢% (x, ») }.
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LEMMA 4.5.1.  In the sets { q; (G) } we can select subsets consisting of a
finite number of points t; ;€ gi (G) (i=0,1,2,...,n; j=1,2,..,5;) such
that for any continuous functions { f “(1) }

n  m;

max max |fi(t)|<Zc ((max | Y > Pk (e, ¥ (ai (x,9) |

Ik teq'li(G) (x,y)eG i=0k=1
k
+ max ‘fl (1, ;) D ,
Kk
where C is a constant not depending on the functions { f% (1) }.

Proof. Since G is polyhedral, for each /i we can choose in g;(G) a
finite set of points { #; ; } so dense that the components of ‘the level curves
e (q1, t; ;)N G form a é-net in the set of all components of the level curves
e(qi, 1) n G, teq: (G). A sufficiently small §, not depending on the func-
tions { £% (r) 1, will be chosen below. We put

= max max |ff(q;i(x,»)|;

ik (x,»eG
h m;
e = max | Y Y pFe /(i ()]s e = max £ ]
(x,»eGCG i=0 k=1 ki

For definiteness, let £} (q} (a)) = u at the point a € G.’ By (5') there exists

a point @' € G such that | Y pf(a)f1(q: (a))| =>Au. Let [a, a*] be a
k=1

segment of the level curve of the function ¢; (x, y) with end-points at a’
and a* such that A, ([¢', a*]) > yG/2 (see the definition of a regular region

y)

in § 4). On the arc [a’, a*] we fix a point ¢” such that w (a) < Pyl where
my

o = hy ([@’,a"]). Then on the segment [a’, a"] the function ¢, (x, y) =

mjy

= Y pr o fi(g:(x y)) keeps’a constant sign and satisfies the inequality
k=1

[ o (x,p) | > Auj2. In fact,
point s € [a’, a"]

@, (a) | = Au at the point a', and for any

’ - j, 1
[01() =0 (@)| = X (P18 = pL(@))fi(@) ] < mypo (o) < é
k=1
Consequently,
1
j ¢y (s)ds| = 5 AL

sefa’ a”]

By construction there is an index j and a segment [b’, b"] of the level
curve e (qy, t; ;) N G such that p ([¢, a"], [, b"]) < 6. We have
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| ei()ds| <cpef,

se [b', b”]

where f = h ([b',5"]), C; = m, max max |pf(x,y)|. And since o
: k (x,y)eG

and B are commensurable (6 will be chosen small in comparison with «),

1 ;
| ei(ds — | ei(s)ds| = - Aue — creso.
se [a’, a"]} ’ Se [b', b”] 2
By Lemma 4.2.3
T e ®ds — [ @i (s)ds | < ¢ (agy +paw () +ud) .

se [a’, a”] se [b'b"]

Thus, ¢ (ae; + pow (8) +ud) = Aua/2 — ¢; o - e,. If § is taken sufficiently
small in comparison with « (in order that c¢; (aw (8) +6) < Aa/2), then we
have u << C (¢, +¢,). This proves the lemma.

Let B be the Banach space consisting of all systems of functions { £ (¢) },
defined and continuous on the sets { ¢; (G) }, with the norm

1 {f5®}| s = max max [fi@®)] (i=0,1,2,..,n; k=1,2,...,m,).
i,k L

teq ; (G)

We denote by C (G) the space of all functions f(x, y) continuous on G
with the uniform metric:

”f(xay)“_C(G)z max lf(an)|-

(x, y) eG

LemMA 4.5.2.  The linear operator T : B — C(G) acting by the formula

T/ ®}) = f(x,y) = 2% i G fi(ah ()

maps bounded closed sets of B onto closed sets of C (G).

Proof. Let F < B be a closed and bounded set of elements of B.
Suppose that f, (x, y) is a sequence of functions in 7 (F£) < C (G), and that
f(x,y)e C(G), where || f(x,») = fn (%, ¥)|lc¢y = 0 as n > co. We show
that then f(x, y) e T (F). Since f, (x, y) € T (F), there exists a sequence of
elements { /¥, (#) } € F such that T ({ f{.(¢) }) = f, (x,»). By Lemma 4.5.1
we can select in the sets {qf (G) } subsets consisting of a finite number of
points ¢, ; € 7;(G) (i=0,1,...,n;j=1,2, ..., s, such that for each element
{f%(#) } € B the inequality

Hri O3 e e/ 0 ]e + max |fi)

)
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is satisfied, where the constant C does not depend on the functions {f"l (1) }.
Since F is a bounded set, there exists a subsequence of suffixes ny, n,, ..
such that for any i =0,1,..,n; k= 1,2,..,m;; j=1,2,..s; the
numerical sequence f’in‘, — C.;.; as v = oo. From this and the previous
inequality it follows that {f’;i,,,v (1) } e F(v=1, 2, ...) is a Cauchy sequence,
because it is known that the sequence f, (x, y) € T (F) is Cauchy sequence.
Consequently there exists an element {f%(z) } € B such that | { /(1)
— fﬁ,,,v ()} HB — 0. Since F is a closed set, { % (¢) } € F. The operator
T: B — C(G) is bounded. Therefore T ({ f% (¢) }) = f(x,y). Consequently
f(x,y)e T (F). This proves the lemma.

The following lemma from the theory of linear operators [28] turns out to
be useful.

LEMMA 4.5.3. Let B, and B, be Banach spaces. If a linear operator
T: B, — B, maps bounded closed sets of B, onto closed sets of B,, then
its domain of values is closed.

Proof of Theorem 4.5.1. The set of superpositions of the form

N
Y. P (X, ) fou (9 (x, ¥)) coincides on G with the set of superpositions of the
m=1 )

form Y Y pi(x, »)f%(gi (x, ). By Lemma 4.5.2 and 4.5.3 the set of the
=0 k=1

2

latter superpositions is closed in the space C (G). This proves the theorem.

§ 6. The set of linear superpositions in the space
of continuous functions is nowhere dense

THEOREM 4.6.1.  For any continuous functions p,, (x, y) and continuously
differentiable functions q,, (x,y) (m=1,2, ..., N) and any region D of the
plane of the variables x,y the set of superpositions of the form

2. P (%, 9) fo (Gm (x, 1)) 5

where {f, (1)} are arbitrary continuous functions, is nowhere dense in the
space of all functions continuous in D with uniform convergence.

By Lemma 4.2.2 we can find a subregion G* < D, determine a constant
y* > 0, and renumber the functions { ¢,, (x, y) }, with two indices so that
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