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?H min inf X(t, Ghqj, { p\}) > -min <- min xX
t eqj (G i) 2 [2 j<i J

Thus, the regular regions Gu G2, Gn can be constructed. The regular
region G Gn satisfies all the requirements of our lemma (X Xn)9 which
is now proved.

§ 5. The set of linear superpositions in the space

of continuous functions is closed

Theorem 4.5.1. Suppose that continuous functions pm(x,y) and

continuously differentiable functions qm (x, y) (m 1, 2, N) are fixed.
Then in any region D of the plane of the variables x, y. there exists a closed

subregion G a D such that the set of superpositions of the form
N

Z Pm (x, y)fmy))
m 1

where {fin (t)) are arbitrary continuous functions, is closed (in the uniform
metric) in the set of all functions continuous on the set G.

By Lemma 4.2.2 and 4.4.3 we can find a subset G c D, determine constants

y > 0 and X > 0, and renumber the functions {pm (x, y)} and

{ (x> y) } with two indices so that the functions obtained after the renum-
bering, {p\(x,y)}and{q\(x,y)} (/ 0,1,21,2,

n

Z mi < N) that is, some functions may be omitted in the renumbering)
i 0

satisfy conditions (1), (2), (3) of Lemma 4.2.2, and also the conditions:

{A') for any continuous functions {fm (t)} there exists continuous
functions {f\ (t) } such that on G

N n mi

Z pm(x,y)fm(qm(x,y))Z Z
m 1 i 0 k 1

(5r) for every i and t e q\ (G) and for any functions {f\ (t) }

max I y. pki y)fk (x' y))\<^ max Ifk (01 ;

(x,y) ee(q ],t^nG k~ 1 k

(6') G is a regular region with respect to the functions { q\ (x, y)}.
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Lemma 4.5.1. In the sets { q\ (G)} we can select subsets consisting of a

finite number of points tt J e q) (G) (/ =0, 1,2, ...,«; j — 1,2, ssuch
that for any continuous functions {/?(/)}

n m i

max max j/'• (M | c(max ] £ E |

/.k «etJlG) (X-y)eG i=°'=1

+ max J/f (tu)I),k

where C is a constant not depending on the functions {f\ (t) }.

Proof Since G is polyhedral, for each i we can choose in qt (G) a

finite set of points { tu } so dense that the components of the level curves

£ (<7i> tij) n G f°rm a ^"net in the set of all components of the level curves

e (q], t) n G, t e q\ (G). A sufficiently small 5, not depending on the functions

{f\ (t)}, will be chosen below. We put

nmax max |/f (q) (x, yj) | ;
k (.v. y)eC

n m i

Sj max I E E /'; ((/I (v\ r)) I : s2 max j/'f (>,•.,) |.
(x, v) e G i 0 /c 1 /c, i,j

For definiteness, let /} (</{ (a)) — p at the point ae G. By (5') there exists
m /

a point a' e G such that | Z (#1 (ß I > ^l1- Let [ar, a*] be a
k — 1

segment of the level curve of the function q\ (x, y) with end-points at a'

and such that ht {[a', a*]) > yG/2 (see the definition of a regular region
2

in § 4). On the arc [a a*] we fix a point a" such that œ (a) < where
2mi

a h i([a\ a"]). Then on the segment [a\ a] the function cp1(x,y)
mi
Z Z7! (-Ay)f î (#î (at)) keeps'a constant sign and satisfies the inequality

jt= l
I <Pi (a T) I > Xp/2. In fact, | <px (a') | > 2^ at the point a', and for any
point 5 6 \a\ a"]

mi Àp
<Pi (s) - </>i («') I I E 0>i (s) - Pi («'))/1 (a') I < (a)

k= 1 2

Consequently,
1

> - 2/./a
2 '(px (5) ds

se [a', a"]

By construction there is an index and a segment [b', b"] of the level
curve e {q[,tUJ)nG such that p ([a',[b', b"]) < 8. We have

L'Enseignement mathém., t. XXIII, fasc. 3-4. 20



— 298 —

J q>1(s)ds\<c1s2ß
selb', b"1

where ß hl([b',b"]), Ct m1 max max \pi(x,y)\. And since a
k (x,y)eG

and ß are commensurable (ö will be chosen small in comparison with a),

I j cp1(s)ds — j (px (5) ds I > - kpa — c1s2cc.
se la', a"] se [b', b"] 2

By Lemma 4.2.3

I J cp1(s)ds — J (p1 (s) ds I < c3 (as1 + paœ (Ô) + pö) »

se la', a"] se Ib'b"]

Thus, c3 (as1 + paœ (ô) + pô) > Xpeel2 — c{ ce e2. If <5 is taken sufficiently
small in comparison with a (in order that c3 (aco (S) + S) < 2a/2), then we
have p < C (&x+ s2). This proves the lemma.

Let B be the Banach space consisting of all systems of functions {f\ (/) },
defined and continuous on the sets { q\ (G) }, with the norm

II {/* (0} I s max max |/i(0| =0> 1» 2,; k 1, 2,
i, k teq

*
(G)

We denote by C (G) the space of all functions / (x, y) continuous on G

with the uniform metric:

||/(x,}0||c(G) max \f(x,y)\.
(x, y) eG

Lemma 4.5.2. The linear operator T:B-*C(G) acting by the formula
n m I

T({fki(t)}) fix,y)E E
i 0 k l

maps bounded closed sets of B onto closed sets of C (G).

Proof Let F a B be a closed and bounded set of elements of B.

Suppose that fn (x, y) is a sequence of functions in T (F) <= C (G), and that

fix, y)e C(G),where|| f(x,y)- /„ (x, ||C(C) 0 as -> co. We show

that then /(x, y) eT (F). Since fn (x, y)^T (F), there exists a sequence of
elements {f\n (t)} e F such that T ({f\n(t)}) fn (x, y). By Lemma 4.5.1

we can select in the sets { q\ (G)} subsets consisting of a finite number of
points ttJ e q\ (G) (/ 0, 1, n; j 1, 2, st) such that for each element

{f\(t)} e B the inequality

1 {/; (0} I s '< c(\\f(x,y)IC(G) + max | |),
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is satisfied, where the constant C does not depend on the functions { f\ (/) }.
Since F is a bounded set, there exists a subsequence of suffixes nu n2,
such that for any i 0,1,..^«; k 1,2, j 1,2the
numerical sequence fkt„ -> Ck i j as v -> oo. From this and the previous
inequality it follows that {f\nv (0 } G F(v 1, 2, is a Cauchy sequence,
because it is known that the sequence fn (x, y)eT (F) is Cauchy sequence.

Consequently there exists an element {fki(t)}eB such that || {/* (/)
_ f),nv (0 } ||b 0. Since F is a closed set, {f \ (t) } e F. The operator
F : B -» C (G) is bounded. Therefore F ({/*(*) }) f (x, y). Consequently

/(x, y) £ T (F). This proves the lemma.
The following lemma from the theory of linear operators [28] turns out to

be useful.

Lemma 4.5.3. Let F1 and B2 be Banach spaces. If a linear operator
T : Bx -> B2 maps bounded closed sets of Bx onto closed sets of B2, then

its domain of values is closed.

Proof of Theorem 4.5.1. The set of superpositions of the form
N

Z Pm (-T y) fn (dm (*> t)) coincides on G with the set of superpositions of the
»1 1

n m i
form Z Z Pki (x> fki (d\ (x> y))- % Lemma 4.5.2 and 4.5.3 the set of the

i 0 k= 1

latter superpositions is closed in the space C (G). This proves the theorem.

§ 6. The set of linear superpositions in the space
of continuous functions is nowhere dense

Theorem 4.6.1. For any continuous functions pm (x, y) and continuously
differentiate functions qm (x, y) (m= 1, 2, N) and any region D of the
plane of the variables x, y the set of superpositions of the form

N

Z Pm (x, y)fn
m 1

where { f„(t)} are arbitrary continuous functions, is nowhere dense in the
space of all functions continuous in D uniform convergence.

By Lemma 4.2.2 we can find a subregion cz D, determine a constant

r > 0, and renumber the functions { qm (x, y)}, with two indices so that
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