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Let L = 04 (1). It follows that L & &%y (2, r;D;), where D; are the
components of D,. Multiplying the isomorphism by ™" ¥, we can assume
¥, >0, minr, =0. Let D, = u D, D, = u D, If fis a local

r;=0 r;>0
equation of ) r;D;, then f £ 0 in any component of D, since r; = 0 on
all these while f(x) = 0, all xe D, n D,, so

# (DynD,) =degp, (@go (Xr:D) .

But this last degree equals (deg D, —n degy, (wp,)) Which contradicts iii)
of Proposition 5.5 unless all r; are zero. Hence L = w@" which shows
9 =&.

LINE BUNDLES ON THE MODULI SPACE

For the remainder of this section we examine Pic (.#,). We fix a genus
g =2 and an e == 3. Then for all stable C, »@° is very ample and in this
embedding C has degree d = 2e (g — 1), the ambient space has dimension
v — 1 where v = (2e—1) (g—1) and C has Hilbert polynomial P (X)
=dX — (g—1). Let H < Hilbpv—1 be the locally closed smooth subscheme
of e-canonical stable curves C, let C « H x P"~! be the universal curve
and let

Jprojective space of bihomogeneous formsl
ch : H— Div = Div®® = ! of bidegree (d, d) in dual coordinates [

u, v (cf. § 1). |
be the Chow map. These are related by the diagram
C
Div et H b My = H|PGL(Y)

If Pic(H, PGL (v)) is the Picard group of invertible sheaves on H with
PGL (v)-action, we have a diagram
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Pic (#,) — " Pic(H, PGL(v)) * _ , Pic(H)PE® < Pic(H).

In this situation, we have:

LemMA 5.8.  In the sequence above, p* is injective with torsion cokernel
and o is an isomorphism.

Proof. o is an isomorphism by Prop. 1.4 [14]; p* injective is easy;
coker p* torsion can be proved, for instance, using Seshadri’s construction,
Th. 6.1 [19]. |
This lemma allows us to examine Pic (./#,) by looking inside Pic (H )P+
which is a much easier group to come to grips with.

DEFINITION 5.9. Let A < H be the divisor of singular curves, 6 = 0y(A4)
and 1, = A" (n, (0c,x®"), (n=1). We write ). for k.
The sheaves 4, and ¢ are the most obviously interesting invertible sheaves

on H from a moduli point of view. The next theorem expresses all of these
in terms just involving A and 6.

THEOREM 5.10. 1, = ,u(2 ® A where u=2A'?® 6L

Proof. The proof is based on Grothendieck’s relative Riemann-Roch
theorem (see Borel-Serre [4]), which we will briefly recall.

Let X and Y be complete smooth varieties over k, 4 (X) be the Chow
ring of X and & be a coherent sheaf on X. Let ¢;(#) € A (X) denote the
i"™ Chern class of &, Chern (#)eA(X)® Q its Chern character and
T (F)eA(X)® Q its Todd genus. These are related by:

€1 (7)?
(5.11) Chern (¥) =rk F + ¢ (F) + — ¢y (F)

+ terms of higher codimension,

¢y (F) N ¢t (F) + ¢y (F)
2 12

+ terms of higher codimension.

T(F) =1 —

Let K (Y) be the Grothendieck group of Y, f: X — Y be a proper map,
and f,(F) =Y (=D)'[R' f, F]eK(Y). The relative Riemann-Roch
theorem expresses the Chern character of f, (&), modulo torsion as

Chern (f, #) = f (Chern &+ T (QY y))
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which using (5.11) gives:
(512) rvkf, F +ci(f1 F) + .ooiniinns

= £, [(rk(% +e (F)+ 1 (#) )

5 —¢; ()
(1 g (9}1(/1') + Cy (Q§/Y)2 + C3 (Qk_/Q)]

2 12

For the time being, we work implicitly modulo torsion.

Now suppose Z is a line bundle such that R’ f, (#) = 0, i > 0 and
suppose dim X = dim Y + 1. Then the codimension 1 term on the left of
(5.12) (i.e. on Y) corresponds to the codimension two term on the right
(i.e. on X). Since ¢, (%) = 0, this gives

(5.13) ([« F) = (L F)
iy [Cl (Q)l(/y)z + ¢ (‘Q)I(/Y) b (F¢y (QJI(/Y) n 01(5’7)2}

12 2 2

Incase f:C— Sisa nioduli—stable curve over S, X = Cand Y = S,
we can simplify this. Indeed I claim that if Sing C is the singular set on C
and I, is its ideal, then

1) codim Sing C = 2

ii) the canonical homomorphism €¢,s = w¢/s induces an isomorphism

1 famnd .
QC/s - [sing Wcys-

We certainly have the isomorphism of ii) off Sing C. At a singular point C
has a local equation of the form xy = ¢", where ¢ is a parameter on S,
x and y are affine coordinates on the fibre. Moreover locally C is singular
only at the points (0, 0) in the fibres where ¢ = 0, so Sing C has codimension
2. Near the singular point

Qé/s = (Ocdx + Ocdy)/(xdy + ydx) O

while w¢,s i1s the invertible sheaf generated by the differential { which
is given by dx/x outside x = 0 and by —dy/y outside y = 0. Thus

1 :
‘QC/S = f/%(o,ow . C = f//(o,c),c - W¢ys -

Recall the following corollary to Riemann-Roch: if X is a smooth variety,

Y < Xasubvariety of codim r and & is coherent on Y, then considering &
as a sheaf on X




,;»-__u_,._‘v.-“__a.,,

— 102 —

0,1l =i=r -1

al?) = {((—1)’_1(r~])!rk F)Y,i=r

Set X = C, Y =SingC and & = Qé/s. The Whitney product formula
applied to the chern classes of the exact sequence |
0— Q}:/s = 0¢ys = Weys @ Ogingc > 0

gives, taking account of the corollary

I+ ¢ (a)C/S)
= (14, (Q8)s) +¢,(Q8)5) +.....) . (1+0—[Sing CT +....)

Equating terms of equal codimension, we see that ¢, (Q¢ i5) = ¢ (w) and
£y (Qé/s) = [Sing C] so that (5.13) becomes ‘

¢t (fu F) =[x [fl (COC/S)2 ]—!2— [Sing C] s (F) c21 (w¢)s) N f_l__(.?i:l

Applying this to the map n: C - H, when &F = w@/y gives

in = A" (n* a)?]},) = (TC* wg)/nH)
. €1 (wC/H)Z + [Sing C] ! (a)(@/’;{) CLSCUC/H) n C}B?ﬁqj
* 12 2 2
n . (¢1 (wc/m)?) + [4]
= <2> my (c1 (CUC/H)Z) 3+ = ("1 Cl/; L

1 C/H ? A 2
7y (€1 (@ {2) )+ 1 ]] and 7, (¢; (w¢/m)?)

= 12 1 — [4]. Plugging these values back in gives us the theorem up to
torsion. But in fact:

Setting!) n = 1, we see that 4 = [

LEMMA 5.14. Over C, Pic(H, PGL (v)) is torsion free.

Note that this will prove what we want because the invertible sheaves that
we are trying to show are isomorphic all “live” on the full scheme H, over
Spec Z of stable @-canonical curves. If they are isomorphic on H,, they
are 1Isomorphic after any base change. But on the other hand, I claim that
Pic (H, PGL (v)) injects into Pic (H¢, PGL (v)): .

1) For n =1, R'w, (w¢/g) is not zero, but it is the trivial line bundle, hence doesn’t |
affect . g



£
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If L is a line bundle on H with PGL (v) action such that L ® C is trivial
over H, then

HO(H, L)PGL(v) ® C = H0<Hc, L® C)PGL(V)

HO(HC, (QHC)PGL(V) =

since HC/PGL(V) is compact. Thus we can find a non-zero section s
e H° (H, L)"%L™ | which over C can be used to give the trivialization o.
Over C, s has no zeros so the divisor (s), of the zeros of s on H, has support
only over the closed fibres of Spec (Z). Mumford and Deligne [6] have
shown that H — Spec Z is smooth with irreducible fibres, hence (s),
‘s
=Y rn ' (p), r;=0 ie. (s), = (n) for some integer n. Then (—) is a
n
global section of L with no zeros so L is trivial.

Proof of Lemma. Over C, we have Teichmiiller theory at our disposal.
Let IT be a standard model of a group with generators {a;, b;|1 =i =g}

g
mod the relation [] (a;5,4; ' b7 ') = 1. Then the Teichmiiller modular
i=1

group I is ,
I' = {a|a: II— IIis an orientation preserving } /inner
isomorphism  automorphisms
The Teichmiiller space J, is given by

[ C a smooth curve of genus g and «: 7, (C) — IT an 1
T, = 4 (C, o) | orientation preserving isomorphism given up to inner
l automorphism J

Fix a model M, of the real surface of genus g, and identify 7, (M,) and
IT. Then I' is generated by the maps which are induced by certain auto-
morphisms of M, called Dehn twists. The Dehn twist h, corresponding to
a loop y: [0, 1] - M, on M, is given by taking an e-collar y X [—s, ¢]
about y, letting & = identify off the collar and letting # (y (), n—¢)

= (y (t+ ;), n — 3> as shown below.
€
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Y X (—¢)

? X (—¢) v x0

Up to inner automorphism £, is determined by which of the pictures below

results from cutting open M, along y. We have name these elements of I’
in the diagrams:

genus g —1

genus g —/

/ genus /

hWerl V hlel"

The Dehn twist 4, can also be described as the monodromy map
obtained by going around a curve C, with one double point for which y
is the vanishing cycle.

The components of 4 < H correspond to the different ways of putting
a stable double point on a smooth moduli stable curve C. They are the clo-
sures of the sets of curves of the forms shown below: again, we name these
components in the diagram:

enus g —/
genus g — 1 genus [/ = g

J/ \ (

closure of set closure of set
A" = | formed by curves A, = | formed by curves
like this like this
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(C, a) € T ,, B a basis of the e-tuple dif-

Let H = { [ =, B) ferentials on C given up to a scalar |

Suppose we are given a line bundle L on H with PGL (v)-action such that
L" = @O. L induces a cyclic covering H’ of H plus a lifting of the PGL (v)-
action to H'. If we choose » minimal this covering is not split: we denote

u its structure group by I';. Let H' be the pullback of covering over H, and

. let I denote the quotient of H by PGL (v)—this is a covering of J
i These coverings are related by

g
| W
B ~
al ~
b RN
Iy Iy
r \ &
Y Y
g
T,
- HoH -4
; , ~
. 7, is simply connected so the cover 7, — J, splits, hence so does H’

— H. A section of this last cover gives a map from H to H' — A’ (shown
dashed in the diagram), so I'; is a quotient of I', of finite order.
~ Lety’ [resp. y,.] be a loop at a fixed base point P, € H — 4 going around

- A" [resp.: 4,] but homotopic to 0 in H. Fix a point P, e H over P,. The
- monodromy characterization of the Dehn twists implies that y’ [resp.: y,]

lifted to H goes from P, to A’ (P,) [resp.: to h, (P,)]. Since y’ [resp.: 7]
are homotopic to 0 in H, and the covering H' — A’ extends over H, this
. implies that the image of 4’ [resp.: 4] in I'; is 0. But these elements and their
,. conjugates generate I';, so [} = { 1}, hence L =~ Oy, proving the lemma
‘ﬁf and the theorem.

In order to describe the ample cone on Pic (,#,) we prove:

THEOREM 5.15.  Ch* (0p;, (v)) = (1® @ A~ %o~
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Proof. The proof depends on a result which we simply quote from
Fogarty [8] or Knudsen [12]:

PROPOSITION 5.16. Let S be a locally closed subscheme of a Hilbert
scheme Hilbpv-1, Ch be the associated Chow map Ch:S — Div and

Z < P" X S have relative dimension r over S. Thenif n » 0, A™ p, , (04(n))
r+1 n

= ® ui(i) and Ch* (O, (1)) = pprq, where p; are suitable invertible
=0

sheaves on S.

In the situation of our theorem, with S = Hand Z = C, 0. (1) = w&}
® n*Q where Q is the invertible sheaf determined by (m,w@%y) ® Q
= Ty Oc (1) = m,0pv-1 (1) = Oy, hence A
(517 Oy = [4™n, 8] @0 = 1P @100
On the other hand,

A" (g Oc (n)) = A™ [, (0€])) ® Q"] = n 2) ® A ® Q"™
This has leading term in n of p"*¢*/2 @ Q%61 o
Ch* (Opi, (v)) = 1" ® Q*e@= 1

= p- (2).ee-1) ® A"4el~ D using (5.17) .

Finally, therefore, Ch* (Op, (v)) = pte=D @ J74@=1 49 required.

COROLLARY 5.18. If e=5, u* @ A~*(=A'**"*®3567°) is “ample on

My, i.e. those positive powers of this bundle which are pull-backs of bundles
on M, are ample on M.

Proof. This 1s an immediate consequence of the Theorem and our main
result: that PGL (v)-invariant sections of Ch* (0p,, (1)) define a projective
embedding of ./Z,. |

REMARK 5.19. A similar argument using the facts that

(1) w®° is base point free for all canonical curves when e = 2,

(2) smooth curves are stable if d > 2g,

shows that if e = 2, the sections of A'**"* ® 67° on ./, separate points
on A ,. |

To get a good picture of the ample cone on .#, we need to use the
realization via @ functions o/, ; 2 . P¥ of the moduli scheme 7, of




principally polarized abelian varieties. More precisely, let J : A, — o/,
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be the map taking a curve C to its Jacobian. Then we have:

THEOREM 5.20. In characteristic 0, the morphism M
extends to a morphism i, ~ 2PN so that for some m, 0*(Opn (1)) = A™

Proof. See Arakelov [1] or Knudsen [12].

REMARK. This should also hold in characteristic p, but it seems to be

a rather messy problem there.

Putting together 5.18 and 5.20, we get a whole sector in the (a, b)-plane
such that 2> ® 6~ “is ample for (a, b) in this sector. This is depicted in the

diagram below:

QS
457

Ne

40 11.2 2‘@
] slope 11
15‘- +«— slope 10
NO B AMPLENESS
PL
A=t Ay, i UNSETTLED
107 Loy ’ (1,10)
.SGCT] O
NN
: %, P
;- %
. a
1 2

The fact that 1 and A'" ® 6™ are not ample can be seen by examining
3 the following 2 curves in .#,:

» (I) If Sy is a curve in .#, composed of curves of the form:

J (2] N
—> Jng,l ——>P
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vary cross ratio of the 4 points
in P! making up the 2 double points

where C,_, is a fixed genus (g —2) component, then 1|, = Og,, hence
sections of A always collapse such families.

(2) If S, is a curve in .#, composed of curves of the form:

Co-1 E an elliptic curve: vary its
J-invariant

where C,_, is a fixed genus (g —1) component, then A'' ® 67" | 5, = O,
i.e. A1 ® 67! collapses these families.
We omit the details.

APPENDIX

We wish to fill in the gap in the proof of Proposition 5.5 on page 95.
The difficulty occurs if the support of £, i.e. (0) X L, contains some of the
components of C, meeting C;. In this case, the inequality

e (Fy) = w

is not clear. Indeed, if D, ..., D, are the components of C, meeting C,,
w; = # (D;nC,;), and %, 1s the pull-back of .#, to D;, then
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