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3. An estimation by interpolation

Lemma 2 reduces the problem of estimating the number of zeros to
one of finding an upper bound for determinantal combinations of the shape

v-^<r ^ A,k g \L*=i -ydk(w)
As we propose to discuss only some very special cases, we alert the reader

on the one hand to the encyclopaedic Muir [14], and, for some determinants
relevant in transcendence work, to van der Poorten [21].

Lemma 3. Let co1? <x*a be complex numbers and denote by DJ}i the

cofactor of the typical element in the a x a determinant
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•

Let n be a positive integer, and write maxt | cok | < Q. Then for each

- 1.2,..., a
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Dx,k

D (n — 1)!
<-

i (niwi)"-1 (n\w\y
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Note. The quantity on the left of (7) remains well-defined by continuity
even though the cok be not distinct. However, we treat the cok as formally
distinct.

Proof. We commence by asserting that off1 is the coefficient

of zA_1 in the polynomial

(8) pu zucorinu/z~~(0h
h=tk \^k

To see this, observe that P (z) is the unique polynomial of degree at most
0- - 1 determined by the a conditions (this is just Lagrange interpolation)

(9) P(co„) ®r\ (h l,...,cr).
On the other hand, if
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then

Q(œh) YX=i œl 1 (YA=IcdÏ 1 ~ œk
1

^kh ~ œh
1
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and it follows that Q(z) P (z) as asserted.

To now evaluate the coefficients of P (z) we expand P in a Newton
interpolation series

(10) P(z) Yil=lbh(z-a>1)...(z-coh_1),

and observe that by virtue of the residue formula we actually have

»
1 f p(>'}

_
1 f r""1

bfo — - —- cly — I dy
2tîî JcCr-Wj) ,..(v-co») 27ii Jc (y — cux)... (7 — coft)

(.h 1, ...,(7),

where the contour C is, say, any circle about the origin of sufficiently large
radius in order that C contain the points cou coa. The second, rather
remarkable, equality is of course a consequence of the fact that the residue
formula only " notices " P at the poles col9..., œh, and at these points,
(8) implies (9), so P (y) coincides with y"-1.

It is convenient to evaluate the second integral at its pole (if there is

indeed such a pole) at oo. Accordingly we obtain

1 f y'1"1
(11) b,,=— — -,jzdy

J_ f dy

2 niJe- y"-h+1 (1 -corf)...(1 -(ohy)

where C' is now a circle about the origin of sufficiently small radius in
order that C' not contain the points oq-1,..., co^-1 (if some cok should
vanish treat it as formally nonzero albeit arbitrarily small). It follows
that bh is exactly the coefficient of yn~h in the power series expansion about
the origin of { (1 — a^ y) (1 - œh y) }_1, that is

(12) IM IE|„|

It is now no longer of any matter that the cok not be distinct or that any should
vanish. Inserting the estimate (12) in (10) we easily see that
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is an upper bound for the coefficient of zA 1 in the polynomial (z) of (8).

Accordingly we have that

i;=i D,k (cokw)h
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which is the assertion.

The following is essentially an immediate corollary of the previous lemma.

Lemma 4. Let gbe a function analytic in a sufficiently large disc about

the origin and suppose that inthat disc

(14)

Let gk(z) g (cok z), (k=1,..., o)andotherwise let the notation be as

in lemma 3. Then ifIgI isthe function

(15) M(z) Z,ti c„-»-1 '

(«-D!
we have for each A 1, a

(16)
D

y*=i-7T0 (®tw)
D

<
QÀ

(£2| vvl)""1

(h-1)!
(ß|w|)

h-1
A — 1

Proof. By lemma 3 we have

D
E*=i-^r 0(®*w)
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which is the assertion.

The critical aspect of the above estimates is that they are independent
of mmh^k \ œk — (oh \ d. The interpolation method of lemma 3 is not at
all new nor is the idea of obtaining results independent of d. The latter
seems appropriately attributable to Turân [30], whilst the former occurs
in Makai [11], [12] in the context of our problem. The interpolation method

appears in a more general way in the thesis of van der Poorten [16], and
thence in the papers [17], [18] [19]. However the recognition of the general
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pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1].
For further details see the references cited in the papers mentioned
above.

4. Exponential polynomials

We commence by making explicit some folklore the principles of which
can be found in [16] and Tijdeman [26], and which is made explicit in
another context in van der Poorten [20].

Lemma 5. For some fixed positive integer cr, and some given function
g, supposed holomorphic in the domain under consideration, denote by
J the set offunctions G of the shape

G 00 LLi M («*0 >

where Zq, ...,ba; cc1, oca are complex numbers. Then, for all sets of non-

negative integers p (1), p (m) with sum Yji i P W a (and all
positive integers m such that 1 < m < cr), for each function F of the shape

F(z) ZU 1 ZtHiahtz'~1g('~1)

the aht complex constants, there is a sequence offunctions in J converging
uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape

F are actually, in a sense, particular cases of, rather than generalisations
of functions of the shape G. Indeed, reindex so that G appears as

(17) G(z) ÏÏ-iW>*9M,
and choose the coefficients bht as functions of co11,..., comp (m) (so of
al5 ocfi so that for each h — 1, m

« h „ IV» ^ - V 00 ^
1

2ni
(is) =Zf=(i cClO n:^(l-ov)
where the closed contour C contains all the coht but excludes any
singularities of g. Clearly there exists a sequence of cr-tuples (co11?..., comp (m)

which converges to (col5..., cOjl ; m2,..., cow) componentwise, and in the

limit, (18) shows that (17) becomes F (z).

I am indebted to D. W. Masser for any felicities in the terminology used

in the lemma.
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