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3. AN ESTIMATION BY INTERPOLATION

Lemma 2 reduces the problem of estimating the number of zeros to
one of finding an upper bound for determinantal combinations of the shape
(w) )

ZH |

As we propose to discuss only some very special cases, we alert the reader
on the one hand to the encyclopaedic Muir [14], and, for some determinants
relevant in transcendence work, to van der Poorten [21].

LEMMA 3. Let wy, ..., 0, be complex numbers and denote by D; ; the
cofactor of the typical element in the o X ¢ determinant

D =" {_ij—0-

Let n be a positive integer, and write max, | a)k] < Q. Then for each
A=1,2,.,0

o D/l,k(a)kw)n~1 1 & (Qlwl)h_l(glwl)"_h h—1
Lic=1 D (n—1)! <th=1 (h—=D! (n—h)! <1—1>

Note. The quantity on the left of (7) remains well-defined by continuity
even though the w, be not distinct. However, we treat the w, as formally
distinct.

Dﬂ.,k n

Proof. We commence by asserting that » ¢, oy~ ! is the coefficient

A-1

of z*~ in the polynomial

(8) P(z) = Zk 1Oy ! Hg=1(2_wh>

r#k \ O — Wy

To see this, observe that P (z) is the unique polynomial of degree at most
o — 1 determined by the ¢ conditions (this is just Lagrange interpolation)

- (9) P(w) =o', (h=1,..,0).
On the other hand, if

D, ._
Q(z) =)5- 1(Zk 1 - o 1> z*71,
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then

D
6 - - Ak _ _
Q(w,) = Zk=1 CUZ ! (Ziﬂwﬁ ! _D_> = ZZ=1 CUZ 15kh = w, ! >

and it follows that Q (z) = P (z) as asserted.
To now evaluate the coefficients of P (z) we expand P in a Newton
interpolation series

(10) P(z) = ZZ=1 by(z—wq)...(z —wy_y),
and observe that by virtue of the residue formula we actually have

P(y) p 1 J y

1
by = — Y = 5 dy,
! 2mL(V~w1)---(v—wh) 270 Jo () —@y) ... (7 — )
h=1,..0),

where the contour C is, say, any circle about the origin of sufficiently large
radius in order that C contain the points w,, ..., w,. The second, rather
remarkable, equality is of course a consequence of the fact that the residue
formula only “ notices” P at the poles w, ..., w,, and at these points,
(8) implies (9), so P (y) coincides with y" 1,

It is convenient to evaluate the second integral at its pole (if there is
indeed such a pole) at o0. Accordingly we obtain

(11)

b _ 1 J‘ ,})n—l dy
"2mi Je (h—w)) .. (p—3)
1 dy

i L, P T —wyy) ... (1 — )

where C’ is now a circle about the origin of sufficiently small radius in
order that C’ not contain the points @, ', ..., w,~! (if some w, should
vanish treat it as formally nonzero albeit arbitrarily small). It follows
that b, is exactly the coefficient of " ™" in the power series expansion about

the origin of {(1 — @;%)...(1 — w,y) } ™', that is

n—1
(12) | by | = | cnn O 0P < ",
[u] h'—l

It is now no longer of any matter that the w, not be distinct or that any should
vanish. Inserting the estimate (12) in (10) we easily see that

h—1 —1
(13) Y (1_1) Q(Z—l) Q-
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is an upper bound for the coefficient of z*~* in the polynomial P (z) of (8).
Accordingly we have that

D}k(a)kw)h 1‘ |W| (”—'1> (h_l) o4
Li-1 (n_l)l ‘\z" Y(n—=1)! A—1

Qh A (Qlwl)n h

(/1—1)v Li= Yh=2! (n—h)!

"

which is the assertion.
The following is essentially an immediate corollary of the previous lemma.

LEMMA 4. Let g be a function analytic in a sufficiently large disc about
the origin and suppose that in that disc

Cn-1 n—1
(14) (Z) = = 1( _])'Z .

Let g,(2) = g(w,2), (k=1,..,0) and otherwise let the notation be as
in lemma 3. Then if [ g ! is the function

' Cn— 1| ”_1
(15) ‘gl(z) = n= 1( __1)’ 5

@wh h—1
0+ 121: R (h—l)' lg | )(QIW|)</1_1>

we have for each 4 =1, ...,0

(16) Zk 1'—9(ka)

Proof. By lemma 3 we have

G D K 0 Dl,k (a)kw)n_1
‘Zk=1?g(0)kw) Zk 1 11=15_'CII—1 F(;’l“‘])'

(Q\WI)” ' (QIWI)” !
Q’l 1211 1 (h'—l)' <A )Zn 1 n 1! (_1‘3’1? s

which is the assertion.

The critical aspect of the above estimates is that they are independent
of min, ., | @, — w,| = d. The interpolation method of lemma 3 is not at
all new nor is the idea of obtaining results independent of d. The latter
seems appropriately attributable to Turan [30], whilst the former occurs
in Makai [11], [12] in the context of our problem. The interpolation method
appears in a more general way in the thesis of van der Poorten [16], and
thence in the papers [17], [18] [19]. However the recognition of the general
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pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1].
For further details see the references cited in the papers mentioned
above.

4. EXPONENTIAL POLYNOMIALS

We commence by making explicit some folklore the principles of which
can be found in [16] and Tijdeman [26], and which is made explicit in
another context in van der Poorten [20].

LemmA 5. For some fixed positive integer o, and some given function

g, supposed holomorphic in the domain under consideration, denote by

J the set of functions G of the shape
G(z2) = ‘ZZ=1 by g (a2) ,

where by, ..., b,; 04, ..., a, are complex numbers. Then, for all sets of non-
negative integers p (1), ..., p (m) with sum >3-, p(h) =0 (and all

~ positive integers m such that 1 < m < o), for each function F of the shape

F(z) = Zr;:=1 Zf:(? Ay z' 1 g(t—l)(a’hz) )

the a,, complex constants, there is a sequence of functions in J converging
uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape
F are actually, in a sense, particular cases of, rather than generalisations
of functions of the shape G. Indeed, reindex so that G' appears as

(17) G(z) = ZTZ=1 Zf:(f) by 9 (wp,2) ,

and choose the coeflicients b,, as functions of w;y, ..., Wp, (my (SO Of
Oy, ..., %,;) SO that for each A =1, ..., m

(t—1D!
2mi

(18) Zf=(f) by g (w,z) = f=(f) Apt Jc g (yz) 1_[:=1 (y _whs)~1 dy ,
where the closed contour C contains all the w,, but excludes any singu-
larities of g. Clearly there exists a sequence of o-tuples (W11, ..., @y (m) )
which converges to (wy, ..., ®W{; @3, ..., ®,) componentwise, and in the
limit, (18) shows that (17) becomes F (z).

I am indebted to D. W. Masser for any felicities in the terminology used
in the lemma. |
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