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existence of smooth functions of several variables not representable by
superpositions of smooth functions of a smaller number of variables.

Bieberbach [5] attempted to prove that there exist continuous functions
of three variables, not representable as a superposition of continuous func-
tions of two variables. Not for nothing did Bieberbach call the 13-th Prob-
lem “unfortunate” (see [6]). Many years later, by the combined efforts of
Kolmogorov [7], [9] and Arnol’d [8], the opposite was proved. So Hilbert’s
conjecture was shown to be false. By Kolmogorov’s theorem any conti-
nuous function of several variables can be represented by means of a superposi-
tion of continuous functions of a single variable and the operation of addition.

Hilbert’s 13-th problem gave rise to a great number of investigations
in algebra and analysis, but the kernel of the problem never the less remains
untouched. In this connection Lorentz [12] made an expressive analogy.
The example of Peano of a mapping of an interval onto a square does not
answer the question about the difference between an interval and a square.
In the same way the theorem of Kolmogorov does not close the 13-th
problem, but only makes it more interesting. It is known, for example, that
superpositions of Kolmogorov’s type, composed of smooth functions, do
not even represent all analytic functions [48].

Thus, Hilbert’s idea of proving the impossibility of solving the general
equation of the 7-th degree by means of functions of only two variables
can be developed in a more positive way. Results available at present do not
contradict, for example, the possibility that the function f(x, y, z) defined
by the equation /7 + xf° + yf'* + zf + 1 = 0 is not a finite superposition
of analytic functions of two variables. On the other hand nobody has
disproved that any algebraic function is a superposition of algebraic func-
tions of a single variable and arithmetic operations.

This paper is a summary of the lectures given at the University of Cali-
fornia in Los Angeles in April-May of 1977. Chapter I presents a survey of
results, the remaining chapters are devoted to proofs.

CHAPTER 1. — SURVEY OF RESULTS

The survey presented is based on the surveys [10]-[12], [33]-[35]. It also
covers recent results:

Definition. We will say that a function f = S (xy, ...y x,) 1S a super-
position of the functions
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of k variables if f identically equals the function ¢, defined by the equalities
® = (P(O)(Ul(l), Uz(l), ey Uk(l)) :
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p;=1,2,... k, i =1,2,...,0, « =1,2,...,s — 1,
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Upy by Bs = Xj(p1, Bas s Bs) -

The number s is called the order of superposition.

§ 1. Superpositions of analytic functions

In stating the 13-th Problem [1] Hilbert added that he had a rigorous
proof of the fact that there exists an analytic function of three variables
that cannot be obtained by a finite superposition of functions of only two
arguments. Although he did not indicate exactly what kind of functions
of two variables he had in mind, Hilbert was apparently thinking of analytic
functions of two variables.

The existence of analytic functions of three variables not representable
by means of superpositions of analytic functions of two variables is a simple
fact and can be obtained from the following considerations. The partial
derivatives of order k& of a function represented by a superposition are
defined by the derivatives of the functions composing the superposition.
The number of different partial derivatives of order p of a function of two

— 1
variables is equal to p%’?) Consequently, the number of parameters

defining. the derivatives of order k of the superposition has order k> (s is
fixed). On the other hand the number of different partial derivatives of
order not greater than k for a function of three variables is of the order k.
Hence for any s there exists a sufficiently large k such that one can find
a polynomial of the k-th degree not representable by a superposition of
order s of infinitely differentiable functions of two variables. The desired
non-representable analytic function can be given as a sum of non-represent-
able polynomials.

More general results in this direction were obtained by Ostrowski [2],
who showed, in particular, that the analytic function of two arguments
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o n :

E(x,y) = ), . is not a finite supérposition of infinitely differentiable
n=1 N

functions of one variable and algebraic functions of any number of variables.
The proof of this result is based on the fact that the function £ (x, y)
does not satisfy any algebraic partial differential equation, that is, an
equation of the form
0¢ 0¢ O (x, )
<b<5, x 2 e

= ey} = 0, where @
ox ~ dy ox*ady”

is a polynomial with constant coefficients in the function ¢ and its partial
derivatives up to a certain order. At the same, it is comparatively simple to
prove that any function of two variables which is a finite superposition of
infinitely differentiable functions of one variable and algebraic functions
of any number of variables necessarily satisfies some algebraic partial
differential equation. In the same paper, Ostrowski conjectured that the
function ¢& (x, y) is not a superposition of continuous functions of one
variable and algebraic functions of any number of variables (see the theorem
of Kolmogorov [9]).

§ 2. The problem of resolvents

Algebraic equations up to the 4-th degree inclusive are soluble by
radicals, that 1s, the roots of these equations can be represented as functions
of the coefficients in the form of a superposition of arithmetic operations and

functions of one variable of the form \’%—(n=2, 3). The general equation
of the 5-th degree, is insoluble by radicals, as Abel and Galois showed.
But since the general equation of the 5-th degree may be reduced by algebraic
substitutions to the form x> + zx + 1 = 0, containing a single parameter ¢,
we may say that a root of the general equation of the 5-th degree is also
represented as a function of the coefficients in the form of superpositions of
arithmetic operations and algebraic functions of one variable. The problem
of resolvents can be formulated in terms of superpositions in the following
way: to find, for any number », the smallest number k such that a root of
the general equation of the n-th degree as a function of the coefficients is
represented in the form of a superposition of algebraic functions of k
variables. In [3] Hilbert conjectured that for n = 6,7, 8 the number k
is 2, 3, 4, respectively. Hilbert’s result [3] for an equation of the 9-th degree
was all the more unexpected: a root of the general equation of the 9-th
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degree is representable as a superposition of algebraic functions of four
variables. Wiman [13], generalizing Hilbert’s result, proved that k <<n — 5
for any n > 9. As G. N. Chebotarev [14] observed, it can be proved by the
same method that kK <<n — 6 for n >21 and kK <n — 7 for n > 121.
A number of papers by N. G. Chebotarev [15] was devoted to the problem of
resolvents. However, the basic Theorem turned out to be wrong (see [16]).

In correcting Chebotarev’s paper Morosov found the right statements
but his proofs also were not without essential gaps [17]. Nevertheless, in
spite of the mistakes the papers of Chebotarev and Morosov have had a
positive influence on subsequent authors.

Arnol’d [18] and Lin [17] have shown that the function f, = f(z,, ..., z,)
which is the solution of the algebraic equation f" + z, f" ' + z, f"?
+ ... + z, = 0 for n > 3 can not be strictly represented as a superposition
of entire algebraic functions of a smaller number of variables and poly-
nomials of any number of variables. Let us recall that a function

= f(zy, ..., z;) is called an entire algebraic function if it satisfies an equa-
tion f™ + p, f™"* + ...+ p, = 0, where p,, ..., p,, are polynomials in
Z{, ., Z. The sentence “a function can not be strictly represented as a

superposition” means in the case under consideration that every super-
position representing the function must have unnecessary branches, 1.e.
the number of branches of any superposition must be at least » + 1. Using
that theorem for n = { 3,4} we see that in spite of the fact that the equa-
tions of degree 3 and 4 are soluble by radicals they do not have strict repre-
sentations. This explains in a sense why unnecessary roots appear when one
uses Cardano’s formulas.

Hovanski (see [19] and [20]) has shown that the solution of the equation
f° 4+ xf*+ yf+ 1 =0 can not be represented by a superposition of
entire algebraic functions of a single variable and polynomials in several
variables. We recall that the Tschirnhaus transformation reduces the
general equation of the 5-th degree to an equation with a single parameter,
that is, the function of Hovanski is represented by a superposition of
algebraic functions of a single variable and arithmetic operations. This
counter example demonstrates that the restriction not to use the operation
of division, is really strong.

We conclude the discussion of the problem of resolvents with a formula-
tion of a well-known problem: is it possible to represent any algebraic
function by means of a superposition of functions of a single variable and
rational functions of any number of variables.




§ 3. ‘Superpositions of smooth functions
and the theory of approximation

In [4] it was proved that in the class of all S times continuously differen-
tiable functions of n variables there exist some that cannot be represented
as a finite superposition of functions for which the ratio of the number of
arguments to the number of derivatives they have is strictly less than »n/S.

This theorem shows that the ratio n/S can serve as a measure of the
complexity of S times differentiable functions of n variables. The original
proof of this theorem made use of the theory of multi-dimensional variations
of sets and estimates of the number of e-distant smooth functions (see [21],
[22]). Kolmogorov [23] showed that the same result can be obtained using
only estimates of the number of elements of e-nets of functional compacts.

We denote by Fg the set of functions f(x,, x,, ..., x,) defined on an
n-dimensional cube, whose partial derivatives up to order S inclusive are
all continuous and bounded by some constant C. Let N, (Fg) be the mini-
mum number of spheres of radius ¢ in the space of all continuous functions
by which the set Fg can be covered.

It turns out that

. log log N, (F;) n
im = —

e—0 (1> S ‘
log| -
g

Hence it follows that if #/S > n’/S’, then the set of functions Fg is, in a
certain sense, “more massive” than Fa.

If a consideration of the massivity of functional compacts does not give
the answer then the problems remain open. For example, there is no answer
to the question: is it possible to represent any analytic function of several
variables by means of a superposition of smooth functions of a smaller
number of variables.

The topic of superpositions led to a large number of papers in approxima-
tion theory. Here we formulate two results concerning non-linear approxi-
mations.

Let #" be a cube 0 << x, <1 (i=1, ..., n); C—the space of all realvalued
continuous functions defined on #" with the uniform norm; F—a compact

subset of C, ¢—a surface in C which consists of the functions represented
in the form
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a ag L N
ay' . ay .. Ay fy
aptor+ ... fap=<k

@ =

BL+Ba+ . +pp=k

where the natural numbers p and k and the collections {f,, . 2p € C}
and { g, ... by € C} are fixed in advance and independent of ¢, {a;}
and { B, } are positive integers and the coefficients { ; } and { b, } defining
the function ¢ can take arbitrary real values.

We remark that for k = 1 the class @ can be turned into any of the
usual classes in approximation theory by means of an appropriate choise of
the number p and collections { f, . «, } and {95, .. 8, }- For example
it can be turned into the classes of polynomials or rational functions of a
fixed degree.

We pute,, (F) = sup inf |/ — ¢ |. Estimates of e, for some functional
feF @ped®

compacts can be found in [21], [22], [24], [25]. Here are two examples of

such estimates
1 s/n
1. e, (F)=>al——n——1 ,
alaiks (p log (k+l)>

where ¢ > 0 does not depend on p and k.

2. For the set F,, consisting of all functions which have an analytic
extension to some domain d in n-dimensional complex space bounded in
modulus by some constant C the following inequality is valid

where b > 0 and 0 < ¢ < 1 are constants independent of p and k.

Now there are more elementary proofs of these inequalities for k = 1
with precise estimates of the constant (see Erohin [26], Lorentz [24], Tiho-
mirov [27], Shapiro [25]).

Let us clarify the meaning of these inequalities. We agree to characterize
the complexity of any algorithm for the approximate calculation of func-
tions firstly by the number of parameters used in the algorithm, and secondly
by the complexity of the scheme of the calculation, for example, by the
number of arithmetic operations required for the approximate calculation
of functions by means of the given algorithm.

In the above-mentioned method of approximation of functions by
functions from @ the parameters are the numbers { @; } and { b; }, and the
number of arithmetic operations increases very rapidly as k increases. At
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the same time, from the inequalities mentioned above it follows that an
increase in k leads to an insignificant improvement in the accuracy of the
approximation. Hence, in a certain sense, a more economical approxima-
tion of functions is by means of expressions of the given form with k = I,
that is, by fractions of the form

P

';0 a; f; (x)

p
Z bjgj(x)
j=o

The same inequalities with & = 1 show that there are no methods of
approximating functions by fractions of the given form essentially better
than the standard methods of approximating functions by algebraic (or
trigonometric) polynomials. '

§ 4.  Superpositions of continuous functions

Kolmogorov’s theorem on the possibility of representing continuous
functions of » variables as superpositions of continuous functions of three
variables was highly unexpected (see [7]).

In this paper Kolmogorov proves that on the n-dimensional cube 4"
we can construct continuous functions ¢; (x) (i=1, 2, ..., n+1) such that
any continuous function f(x), defined on the cube .#", can be represented in

the form
n+1

S0 = ¥ Ad).
where d; (x) is a continuous mapping of .#" onto the one-dimensional tree ')
D if the components of the level sets of the functions ¢; (x), and f; (d;)
is a continuous function on the tree D;. Since the trees { D;} can be em-
bedded homeomorphically in the plane (see [30]), the functions { f; (d; (x)) }
can be thought of as superpositions

{fi(“i(xlax29 ....,X,, s vi(xl.a xz: vees X”))}

Y Kronrod [29] has shown that the components of all possible level sets of any
continuous function defined on #n in a certain natural topology, form a tree, that is, a
one-dimensional locally connected continuum, not containing homeomorphic images
of circles. Kronrod calls this the “one-dimensional tree of the function”.
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where { f; (u;, v;) } are continuous functions of two variables, and { u; (x) }
and {v;(x)} are fixed continuous functions of n variables. Kolmogorov
derived from this the result that for n >4 any continuous function of
n variables can be represented by the following superposition of continuous
functions of not more than n — 1 variables:

le,- (11 (X1 X s Xym 1) > Ui(X 5 Xgy ety Xpmq) s X,)

Arnol’d [8], [22] showed that, firstly, in Kolmogorov’s construction [7]
we can nianage with functions { ¢; (x) } whose one-dimensional trees { D, }
have index at each branch point equal to 3, and, secondly, for any compact
set F of functions defined on such a tree D, the given tree can be so placed
in three-dimensional u, v, w-space that any continuous function f(d)
= f(u,v, w) € F can be represented as the sum of functions of the coor-
dinates, f(u,v,w) = @ (u) + ¥ (v) + k (w). Hence it follows that any
continuous function f(x, y, z) of three variables can be represented as a

9
superposition of the form f(x,y,z) = Z /i ((p,- (x, y), z), where all the
i=1
functions are continuous, and the functions { ¢; (x, y) } can be regarded as
fixed, when f(x, y, z) is taken from a compact set. Thus, Arnol’d had the
last word in refuting Hilbert’s conjecture. At the same time Kolmogorov [9]
obtained, in a certain sense, the definitive result in this direction.

Each continuous function of n variables, given on the unit cube in

n-dimensional space, is representable as a superposition of the form

2n +1

f('xlax,b '-'7xn) = Z gq( Z (pp,q (xp)) ) (1)
q=1 p=1

where all the functions are continuous, and moreover the functions
{ ¢,,(x,)} are standard and monotonic. |

In particular, each continuous function of two variables is representable
in the form

fx,p) = Z_l fila: () +B:(y) - (1D

Kolmogorov’s theorem can be supplemented by the following result of
Bari, which was obtained in connection with problems of Fourier series:
any continuous function of one variable f'(¢) can be represented in the form

F (1) =fi (o (1) + 12 (02 (1) + f3 (¢35 (1)), where all the functions {f;}

and { ¢, } are absolutely continuous [32].
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From the theorems of Kolmogorov and Bari it follows that each con-
tinuous function of n variables can be represented as a superposition of
absolutely continuous monotonic functions of one variable and the opera-
tion of addition.

A detailed account of Kolmogorov’s theorem is to be found in the
surveys [9], [33]-[36]. The proof presented by Kahane is of special interest
[36]. He does not attempt to construct the functions { ¢, , } (as the proof of
Kolmogorov does) but instead he shows by means of Baire’s theorem, that
most selections of increasing functions { ¢,, } will do. This approach also
lead to other interesting results.

Fridman [37] showed that the inner functions { ¢,, } can be chosen
from the class Lip 1. Kahane noticed that this follows directly from Kol-
mogorov’s theorem. For any finite collection of continuous and monotone
functions {f, (x) } on the segment [0, 1] there exists a homeomorphism
x = ¢ (s) of the segment [0, 1] onto itself such that the functions { g, (s)
= fi (¢ (s)) } belong to the class Lip 1. The homeomorphism is taken as

s = 1 (x) = S(X+§|f}c(X)-f}c(0)l)-

The constant ¢ is chosen to satisfy the condition ¢! (1) = 1. By means
of such homeomorphisms all inner functions in Kolmogorov’s formula can
be turned into functions satisfying the condition Lip 1.

There are some other improvements of Kolmogorov’s theorem:
Doss [38], Bassalygo [39], Lorentz [34], Sprecher [40] (see chapter 3, § 1).
There are also many results concerning special types of superpositions
(see [21], [33], [41]-[44]).

§ 5. Linear superpositions

We return again to superpositions of smooth functions.

One of the most interesting current problems on the subject of super-
positions is the following: does there exist an analytic function of two
variables that cannot be represented as a finite superposition of continuously
differentiable (smooth) functions of one variable and the operation of
addition ?

Linear superpositions arise as a result of the following argument.
Suppose that a function of two variables f(x, y) is an s-fold superposition
of certain smooth functions of one variable {f; (t) } and the operation of
addition. We vary this superposition, that is, we consider a superposition

L’Enseignement mathém., t. X XIII, fasc. 3-4. 18
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S (x, ) of the same form, but composed of the functions { f; (¢) + ¢;(?) },
where { ¢, (#) } are small perturbations that are also smooth functions of
one variable. Then the difference of these superpositions can be written
in the form

F50) =f03) = ¥ pi(63) 0i(:(5, ) + 0 (max sup [@:(1) 1), (1)

where the functions { p;(x,y)} are expressed in terms of the original
functions { f; (#) } and their derivatives, so that we can only say of them that
they are continuous; { g; (x, y) } are expressed only in terms of the functions
{fi(#) }, hence they are continuously differentiable; the remainder term
o (max sup ‘ Q; (1) ]) is an infinitely small quantity compared with max sup
i t i t
. . do;

} @, (1) |, provided only that the functions {Ez‘—l} have some fixed modulus
of continuity. Equation (III) gives some hope of reducing the general
problem of superpositions of smooth functions to the determination of
analytic functions not representable by superpositions of the form

N
; pi(x, ) 9:(q:(x, ) , 0\%

where { p;(x,y)} are preassigned continuous functions, { ¢, (x,y)} are
preassigned continuously differentiable functions, and { ¢, (¢) } are arbitrary
continuous functions of one variable.

Such superpositions are called linear, to emphasize the fact that the
functions { p; (x, ) } and { ¢; (x, y) } are fixed and the superposition depends
linearly on the variable functions { ¢, (¢) }. We note that Kolmogorov’s
superpositions (I), (II) are also linear, since all p; =1 and ¢; (x, y) = «; (x)
+ B, (y) (i=1,2,3,4,5) are fixed continuous functions.

It is proved in [47], [48] that for any continuous functions { p, (x, ») }
and continuously differentiable functions { ¢; (x, y) } there exists an analytic
function of two variables not representable as a superposition of the form
(IV). Henkin showed that the set of superpositions of the form (IV) is
closed and consequently nowhere dense in the space of all continuous func-
tions of two variables. Hence, in particular, it follows that there exists even a
polynomial not representable as a superposition of the form (IV).

A comparison of these results with Kolmogorov’s theorem leads to the
conclusion that the inner functions of Kolmogorov’s formula, although
continuous, must inevitably be essentially non-smooth.
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We note that the results mentioned above can be extended without any
essential difficulties to superpositions of the form

N

Z Pi(X15 s Xp) [y (C,{i(xla oo xn)) ]

i=1
where { p;} are preassigned continuous functions, { g, } are preassigned
smooth functions and {f;} are arbitrary continuous functions of one
variable. But as it turns out this does not apply to superpositions of the
form

N .
Z pi('xla "'9xn)fi(CI1,i(x13 "'axn)a veey ('Zk,i(xlv "'7xn)) 9
i=1

where {p;} are fixed continuous functions of n variables; and
{4qi}s - { gy, } are fixed smooth functions of n variables (k<n). Fridman
answered that question only for n = 3,4, k = 2 and { p; } = 1.

Also it is not known to what extent the problem of superpositions of
smooth functions can be reduced to that of linear superpositions. “Such a
reduction is proved only in the case of the so called stable” superpositions
[10]. Tt turns out that not every analytic function of n variables can be
represented by means of superpositions of smooth functions of a smaller
number of variables it is assumed that the scheme is stable, i.e. for a small
perturbation of a function represented the perturbations of the functions
composing the superposition are comparatively small.

CHAPTER 2. — SUPERPOSITIONS OF SMOOTH FUNCTIONS

In this chapter we prove the existence of smooth functions of »n variables
(n > 2), not representable by superpositions of smooth functions of a
smaller number of variables.

§ 1. The notion of entropy

We will denote by C (#) the space of all functions defined on a set .#
and continuous on .# (the norm is the maximum of the absolute value of the
function). We fix a compact F < C(#) and a positive number . A set
F* < C(¥) is called an e-net of F if for any fe F there exists f* < F*
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