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libre, le produit tensoriel Pn (Z) ®ZB est une résolution simpliciale Pn (.B)
de la 5/7-algèbre B. Considérons encore les produits tensoriels importants

Rn(Z) Pn (Z ®z„Z et Rn(B) Pn(B) ®BnB

Les iLalgèbres simpliciales Rn (Z)®z B et Rn (B) sont alors isomorphes
de manière élémentaire.

Considérons maintenant l'homomorphisme de l'anneau Zn dans
l'anneau A qui envoie les générateurs xt sur les éléments et les générateurs yjk
sur les éléments gjk. Par nature, cet homomorphisme est appelé à varier.
Au niveau des quotients de Tor3 par Tor2. Toiq, l'homomorphisme
correspondant envoie l'élément générique tn sur l'élément quelconque t donné
initialement. L'homomorphisme de Zn dans A donne un homomorphisme
de Rn (Z) dans R, donc un homomorphisme de Rn (K) dans R, par produit
tensoriel.

En résumé, on a la ^-algèbre simpliciale R qui donne lieu au complexe
cotangent de la Z-algèbre K, avec l'homomorphisme n correspondant, et
la iCalgèbre simpliciale Rn qui donne lieu au complexe cotangent de la

^-algèbre K, avec l'homomorphisme nn correspondant. De plus il existe

un homomorphisme de Rn dans R plaçant finalement tn au-dessus de t et

nn au-dessus de n. En particulier l'homomorphisme n est nul en entier, si

l'homomorphisme 7zn est nul sur l'élément générique. Il reste à préciser quel
est l'élément 7in (tn). On peut localiser Kn sans rien changer, si on le désire.

Enfin dénotons par Mn le noyau de l'homomorphisme de Kn sur K. L'idéal
Mn a n («+1)/2 générateurs, alors que l'idéal Man générateurs.

Conclusion

Considérons une résolution libre et multiplicative Fn de la Ah-algèbre K

et dénotons par Fn le produit tensoriel Fn®Kn K qui permet le calcul de

Tor Kn (K, K). Dans la définition de l'homomorphisme nn, on peut

remplacer les iCalgèbres simpliciales Rn et Rn par les TCalgèbres différentielles

Fn et Fn. L'élément gn appartient alors à Fn®Kn Mn et représente un
élément de l'espace vectoriel

Torf (K, Mn) s Torf (K, K).
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11 faut alors considérer hn, la p-ème puissance divisée de gn, qui est

l'élément suivant de Fn®Kn Mn, avec le degré 2p,

^iih-hf-xhp dxh A dx'2 A-'- Âdx'2p- A dxnP

avec la condition 1 < i\<i2 < < i < w et avec 'a définition

classique
^ & y o\G2 -f °'2Jp - la2p

où la permutation a des 2/? éléments q est soumise aux restrictions suivantes

ox < a3 < < a2p-i <7j < cr2 (j2p_1 < cr2p

Mais alors l'élément 7W {tri) est nul si et seulement s'il existe une famille

d'éléments cq et ßj dans Fn avec les propriétés simples suivantes. En premier
lieu, les éléments cq et ßj sont tous de degrés strictement positifs. En

deuxième lieu, les bords doLj et dßj sont tous des éléments de Fn®Kn Mn. En

troisième lieu, l'élément hn est égal à la somme des bords d (oq. ßj).
Lorsque l'idéal M est engendré par 2p-\ éléments, on peut utiliser Kn

avec n égal à 2p-\ Mais alors hn est nul de manière élémentaire. Par conséquent

n est nul et on obtient un isomorphisme g2p + i manière naturelle.

Lorsque l'idéal M a sa /?-ème puissance nulle, on peut remplacer Kn

par le quotient Knj{Mn)p. Mais alors hn modifié est nul de manière
élémentaire. Par conséquent n est nul et on obtient un isomorphisme rj2p+1 de

manière naturelle.
La plus petite algèbre Kn qui risque d'être intéressante est donc celle avec

p égal à 2 et n égal à 4. Un long calcul démontre en fait que l'élément nn (tri)
n'est pas nul. Par conséquent, il existe un anneau local de caractéristique 2,

dont l'idéal maximal a 10 générateurs et pour lequel l'épimorphisme rj5 n'est

pas un isomorphisme, autrement dit pour lequel s5 est strictement supérieur
à <55. A vrai dire, il existe des anneaux beaucoup plus petits avec cette
inégalité, par exemple certains anneaux finis dont les idéaux maximaux ont
exactement 4 générateurs.
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