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of a compact set K. The right-hand side of the above formula reduces to the
volume of K, while the left-hand side gives the mean value of

card (L — {0} n K),

as L varies over all Z-lattices in R” with volume 1.

We turn now to the adelic mean value formula. Let G be a linear al-
gebraic group defined over Q, and let X be an algebraic homogeneous space
for G, defined over Q. For £e X, let G, = {ge G:g& = &}. We assume
that

a) X has at least one rational point
b) for any ¢ e X, both G and (G, have finite fundamental groups
c) for any extension field K of Q, G acts transitively on Xy.

We then have the following result.

THEOREM (Ono [2]). There are canonical measures on the adele spaces
G, and X, such that, given any continuous function ¢ on X, with compact
support,

[ ) @(gx)dg
(4 AIR0 P00 = [ &(x)dx,
T (G&_f) Xj;i
where ¢ is any element of X, and 7 (G,) = the invariant measure of
(Ge)4 | (Gg)g. The analogy to the previous mean value theorem is clear in
the cases when 7 (G) = 1 (Gy).

3. FORMULATION OF SIEGEL’S THEOREM

Let S and T be square matrices with integral entries of size m and n,
respectively. We assume that both are positive definite. For any matrix x,
denote S [x] = ‘xSx (when defined). Let 4 (S, T) = the number of integral
m X n matrices x such that S [x] = 7. For each positive integer ¢, let
A, (S, T) = the number of integral m X n matrices x, mod ¢, such that
S [x] = T (mod q).

A positive definite integral matrix S’ 1s said to be in the same class as S
if S = S[U], for some Ue SL (m, Z). S’ is in the same genus as S if for
each ¢, there exists Ue SL (m,Z) such that S’ = S[U](mod g). Let
S, ..., S, be the representatives of the classes in genus (S). Let E (S;) = the
finite group consisting of all U ¢ SL (m, Z) such that &; [U] = §,, and put
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e; =1/ # E(S;), where # denotes cardinality. We now define the “number
of representations of 7" by the genus of S” as

es A(Sy, T) + oo 4+ ¢, A(S;, T)
ey T ... T 6

A(genus(S), T) =

Now S is a real symmetric matrix, and so we may view it as a point
in R™, where n, = n(n+1)/2. Similarly, T is a point in R™". Let dt be
the usual measure in R™', and let dx be the usual measure in the real
vector space of m X n matrices. Given ¢ > 0, let B, denote the ¢-neighbor-
hood of 7 in R™', and let C, denote the set of x & M, ., (R) satisfying
S [x] ¢ B,. Then B, and C, are open sets with compact closure, and the
following limit is known to exist:

A, (S, T) = lim | dx/ [ dr.

e—0 Ceg B¢

‘THEOREM (Siegel [4]). For m — n = 3,
A4,(S,T)

qmn —(m+1l)n/2 "

(S) A (genus (S), T) = A, (S, T) lim

4. DERIVATION OF SIEGEL’S THEOREM

Let G ={geSL(m):S[g] = S},and let X = {xe M, «,: S[x] = T}.
If m > 4, both G and G, have fundamental groups of order 2. Condition
(c) of § 2 is the classical Witt theorem for (G, X). We assume that Xg is
nonempty.

We will show that (4) implies (S). This reduces Siegel’s theorem to the
computation of the Tamagawa number 7 (G).

Let &, = the constant function 1 on Xy, and let &, = the characteristic
function of X. z, 0 Xo . Then & = &, - [] @, is the characteristic function
of Xs = Xg ' [] sz in X,. Because of the positive definiteness of S,
@ has compact support.

Consider the right-hand side of formula (.S). Siegel has shown that there
exists an algebraic gauge form dx on X such that 4, (S, T) = | dx,, and

XR
A (S, T)

lim omn — (n+l)n/2 = H j dxp 2
qa 4 p XZp

where dx and dx, are the positive measures induced on Xg and X, Qp bY dx.
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