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LEMMA 2.3.3. ]fE > n—, then for any natural k the set Q0 C (F")
s S

is nowhere dense in Cg (S").
By lemma 2.3.1 and the theorem 2.2.1 for any natural k H,(2,)

n'/s’
< C(—) , where C does not depend on ¢. Hence, it follows from the
€

n n' ' ,
inequality — > — and lemma 2.3.2 that the set Q, n C, (/") is nowhere
s S

dense in C, (S").
Now to prove the theorem we have to notice only that the set of func-

o8]

tions from C, (#") representable by superpositions coincides with U (£,
k=1

N C; (A"). By lemma 2.3.3 the sets {Q.n Cy(F") } are nowhere dense and
consequently the set of not representable functions is a set of second cat-

egory.

CHAPTER 3. — SUPERPOSITIONS OF CONTINUOUS FUNCTIONS

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire’s theory contains a
minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov’s formula.

§ 1. Certain improvements of Kolmogorov’s theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube #" can be represented as

2n+1

f(xla"‘bxn) - Z gq( q)p,q(xp)):
qg=1 p=1

where {¢,,} are specially chosen continuous and monotonic functions

which do not depend on £, and where { g, } are continuous functions.
Lorentz [12] has noticed that in the theorem of Kolmogorov the func-

tions { g, } can be chosen independently of ¢. In fact, by adding constants

n

to the functions 7, = ) ®,4(x,) (=1, .., 2n+1) one can make the ranges
p=1
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of the functions pairwise disjoint and consequently the functions {z,}
can be considered as the restrictions of a single function { g, }.

Sprecher [40] has shown that the functions { ¢, , } can be chosen in the |
form ¢,,(x,) = 4,¢,(x,) where {1,} are constants and { ¢, }-are 5
continuous monotonic functions.

Thus any continuous function can be represented as

2n+1 n
f(xlﬂ "'an) = Z g( Z ﬂ“p(pq(xp)_) 5
g=1 p=1
where the constants { 1, } and the continuous monotone functions { ¢, }
do not depend on f, and where g is a continuous function.

Kahane [36] has shown that such a representation is possible with
almost every collection of constants { 4,} and “quasi every” collection
of continuous functions { ¢, }. The precise statement of this theorem
will be given below. Here we consider some further results concerning the
formula of Kolmogorov.

Doss [38] has shown that for any continuous monotonic functions
0, (p=1,2; g=1,2,3,4) there exists a continuous function f(x, x;)

4
of two variables not representable as a superposition of the form ) g,

2 qg=1

(> ¢,,(x,), where { g, } are continuous functions.
p=1 ‘
Bassalygo [39] succeeded in showing that for any continuous functions

@; (xq, x,) (=1, 2, 3) there exists a continuous function f (x{, x,) that is not
3 B

equal to any superposition of the form > g;(¢; (xq, x,)), where {g;}
i=1

are continuous functions.

Tihomirov showed that Kolmogorov’s theorem can be generalized as
follows: for any compact K of dimension n there exists a homeomorphic
embedding ¥ (x) = {¥; (%), ..., ¥2,+1 (x) }, x € K into (2n+ 1)-dimensional

euclidean space such that any continuous function f(x) on K can be repre-
2n+1 )

sented in the form /'(x) = ), g;(¥; (x)), where { g, } are continuous func-
i=1

tions of one variable.

In the same paper [36] Kahane has shown that there exist complex
numbers 1, (p=1, ..., n) and complex valued functions ¢, (g=1, ...,2n+1)
possessing the following properties.

1. The function ¢, is a monotonic continuous transformation of the
real axis onto the circle | 7| = 1 (¢=1, ..., 2n+1).
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2. The function f, = 2’1 A, ¢, (x,) maps the cube #" into the circle
1] = 1. ’ n

3. The transformation ¥ given by the equalities 7, = Zlﬂp @, (x,)
(g=1, ..., 2n+1) is one-to-one on S". ’

4. For any function f continuous on #" there exists a function g (z)
continuous on the disk |z | <1, holomorphic inside that disk, and such

2n+1 n
that £= Y g (3 20, (5)).
¢g=1 p=1
The transformation ¥ gives an embedding of the cube #" into the torus
] z‘l =1 (g=1, ..., 2n+1) such that any function continuous on the cube
2n+1

" =Y (F") is represented in the form f(Zy, ..., f2,51) = ., ¢ (1,), where
qg=1
g is a function holomorphic in the unit disk. This means in particular that

any function continuous on .#" has an analytic extension to the polydisk
|7, <1(g=1,...,2n+1).

§ 2. The theorem of Kahane

Let M be a complete metric space. We recall that a set is called a set of
second category if it is the intersection of a countable family of open sets
which are everywhere dense in M. By the theorem of Baire in a complete
metric space no set of second category is empty. The massivity of such sets
is characterized by the fact that the intersection of a countable family
of sets of second category is again a set of second category and consequently
is not empty.

We will say that a statement is true for quasi every element of M if it
is true for a set of elements of second category.

Let us consider an example. Let @ be the space with uniform norm
consisting of all functions continuous and non-decreasing on the segment
- S0 <t < 1). It can be shown easily that quasi every element of @ is a
strictly increasing function.

In fact, any strictly increasing function belongs to any set defined as
@ (r') < @ (r"), where r' < r" are fixed rational numbers. Any set defined
by an inequality of that type is open and everywhere dense in @, and the set
- of all such sets is countable.
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Let 4" be the cube {0 <x; <1,i=1,..,n}; C(F")-the space of all
functions continuous on #" with the uniform norm; @-the space of functions
continuous and non-decreasing on the segment .# ' (with the uniform norm);
®* = ¢ x ... x @ the k-th power of the space ®.

THEOREM 3.2.1. Let A, (p=1,...,n) be a collection of rationally inde-
pendent constants. Then for quasi every collection { ¢y, ..., p5,41 € P*"F1
it is true that any function fe C(F") can be represented on F" in the form

2n+1 n

flx) = ;g( Z Aoy (x,))

where g is a continuous function.

§3. The main lemma

We ﬁx a function fe C(S#"), positive numbers 4, (p=1,...,n) and a
positive ¢&. We will denote by Q, the set of all collectlons { @y s Pans1 }

e @>"*1! for each of which there ex1sts a continuous function 4 such that
2n+1

4] <07 and £ = £ A (S o) | < (1=0)| 1. The latter

inequality is strict and consequently the set €, 1s open.
The idea of the construction is contained in the following statement.

Lemma 3.3.1. If | f|| # O, the numbers {1,} are rationally inde-

1
pendent, and 0 < ¢ < ———, than the corresponding set Q , is everywhere
2

dense in ®*"+1 2n +

Proof. Let us fix an open set @ < &*"*! and prove that Q n Q, is
not empty. This will imply that Q, is everywhere dense in @>"*1.

We choose a number 6 > 0 and denote by ., () the segment defined
by the inequality

g0+ Q2n+1)j-o<t<<q "0+ 2n+1)jo + 2no
(q=1, ..., 2n+1,jis an integer) .

The value 6 will be determined below. Now we notice, firstly, that for any ¢
the segments £, (j) (=0, 1, £2) are pairwise desjoint and every two
consecutive segments are separated by an interval of length ¢ and, secondly,
that, every point of the real axis belongs to at least 2n of the sets Z )
(g=1,...,2n+1).
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We denote by P, (jy, ..., /) the cube
go + 2n+1)j,0 <x, < q 0 +Q2n+1)j,0 + 2nd (k=1,...,n).

We emphasise that every point x € #" belongs to at least n + 1 of the sets
Y P,(jis s ju) (=1, ..,2n+1). We also remark that for any g the

jl ...,_]n
cubes { P, (ji, ..., j,) } are pairwise disjoint.

We denote by Q* the subset of @*"*' consisting of the collections
@1, ..., P2,+1 such that for every g the function ¢, is constant on every one
of the segments { £, (/) }. We will assume that é is so small that Q* n Q
i1s not empty.

We choose a collection { @y, ..., ¢3,41 } e Q* n Q. We will show that

this collection belongs to Q.. We put 7, Z A, @, (x,). Since the numbers

{ 4, } are rationally independent we can change the constants { ¢, (7, (M)}
slightly, so that the new values of t, (p, (j;, .., J»)) are pairwise different and
the collection ¢y, ..., ¢,,+; remains in Q% N Q.

We denote by f, (ji, ..., j,) the value of the function f at the center
of P, (ji,...,J,) and by h the function defined in the following way:

h (fq (.]1: a]n)) = *—*f;] (]19 ooy ]n) outside the set v tq (.]13 -"9.]11)
2” —I_l q4.J1,--0n
the function £ is deﬁned in such a way that it is continuous on the whole real

axis and | /| < ﬁi 171
2n+1 2n+1 f
Now we estimate the function |/ — Z h(t)| =13 — h(t,)
For any x € .", q, jy, ..., ji, ” o 2t
f 1
w1 h (1) Y ”f“ +[h] < 2_17 | £+ o+l | /]
'2775?1 Hf”
If xe P, (jy, ..., ju), then
f
2n+1 —h (1)
< max max f&) — min A =
@J1sesin | X€pg(Uls-ndn) 2n+1 xepy (1, .sin) 2n+1

We recall that every xe.#” belongs to at least n + 1 of the cubes
{ P, (i, - J) }- Hence

L’Enseignement mathém., t. XXIII, fasc. 3-4. 19
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2n+1

|f - Z h(t) | < (n+1)p +n

— 71

: , 1
But lim p = 0, consequently for sufficiently small § and ¢ <
6—0 2n‘F2

2n+1

7= 5 h] <=2l

The lemma is proved.

§ 4. The proof of the theorem

We denote by F a countable set, everywhere dense in C (#"). We choose ¢
satisfying the condition of lemma 3.3.1 and consider Q,, ( f, € F) corres-
ponding to this ¢ and the collection 4, mentioned in the theorem. The sets
{ Q) are open and by lemma 3.3.1 they are everywhere dense in ¢*"*1.
Consequently, according to the definition, almost every element of ¢2"*!

belongs to &* = N Q.
SreF
We fix a collection { @y, ..., 95,41 } € * and a function fe C (5"

and show that the desired representation of f takes place. If f= 0 then as
the function g we can take g = 0. We will assume below that f == 0. Accord-

ing to the definition of Q,, there exists for any f; € F a function 4, such that
2n+1

o = 2 h (Y 2,0, (x)) | <(1—¢)| fi |- The set F is everywhere dense
p=1

in C(#"). Consequently for any fe C(F") (f £ 0) there exists & = y(f)
such that

=L HCE )| < (1-2) 111

We define the sequence of functions 70, X1> X2, .- Dy the recurrent

equalities
2n+1

Xo =S5 Xes1 = Xk — Z gk( Z A‘p(pq(x ))

where g, = y (xx). The series ) g, converges umformly and consequently

00 k=0
the function g = ) g, is continuous and
k=0
2n+1

f - Z g( Z ’lpqpq(xp)) = 0.

The theorem is proved.
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