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4. The Gelfand-Naimark representation theorem
FOR COMMUTATIVE B*-ALGEBRAS

Let us briefly recall the Gelfand theory of commutative Banach algebras

(for proofs of this preliminary material see [29, pp. 470-479]).
A

If A is a commutative Banach algebra denote by A the set of all nonzero

complex-valued linear functional (j) on A satisfying </> (xy) ** </> (x) </> (y)
A

for all x, ye A. If 0 e A, then || </> || < 1. For each x in define a complex-
A A A A A

valued function x: A C by x (</>) (j) (x) for <peA; x is called the

Gelfand transform of x. A A

The Gelfand topology on is defined to be the weakest topology on A
A

under which all the functions x are continuous; it is the relative topology
A

which A inherits as a subset of the dual space Ä with the weak*-topology.
A

The set A endowed with the Gelfand topology is called the structure space

of A.

If the algebra A has no identity element it is often convenient to adjoin
one. This can be done by considering the algebra Ae of ordered pairs (x, A)

with x e A, Ae C. The product in Ae is defined by (x, A) (y, fi) (xy + Ay
+ px, Ap) and the involution by (x, 2)* (x*, A) if A is a ^-algebra. Identifying

x in A with (x, 0) in A
e we see that A is a maximal two-sided ideal in

Ae with e (0, 1) as identity. If A is actually a Banach algebra Ae can also
be made into a Banach algebra by extending the norm on A to Ae\ for
example by defining || (x, A) || j| x || + | A |. Every multiplicative linear
functional 0 on a commutative Banach algebra A can be extended uniquely
to a multiplicative linear functional <pe on Ae by setting 4>e ((x, 2)) </> (x)
+ 2 for (x, 2) g Ae.

It follows from the Alaoglu theorem [29, p. 458] that the structure
A

space A of a commutative Banach algebra A is a locally compact Hausdorff
space which is compact if A has an identity. Furthermore the functions
A A

xon2 vanish at infinity.
A

The mapping x x, called the Gelfand representation, is an algebra
A

homomorphism of A into C0 {A). Moreover, if fl • ||x denotes the sup-norm
A A A

on C0 (A), then [ x ^ < || x ||, and so x x is continuous. In general, the
Gelfand representation is neither injective, surjective nor norm-preserving.
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But in the case of a commutative B*-algebra it will be seen to be an isometric
A

*-isomorphism of A onto C0 (A).
For this purpose we introduce the spectrum of an element x in an

algebra A with identity as the set oA (x) of all complex X such that x — X

is not invertible in A; if A has no identity define oA (x) <rAe(x). The

spectrum of an element x in a Banach algebra A is a compact subset of the

complex plane and furthermore the following basic Beurling-Gelfand
formula holds:

I x |ff lim || xn ||1/n < || x ||

n->oo

where | x |ff sup { | X | : X e oA (x) } is called the spectral radius of x.
The multiplicative linear functional on a commutative Banach algebra A

are related to the points in the spectrum of elements of A. If X ^ 0, then
A

X e oA (x) if and only if there exists (j> e A such that (j) (x) X. Hence
A A A

x (A) u { 0 } oA (x) u { 0 } and so || x || ^ | x < || x ||. Now we

are ready to prove the Gelfand-Naimark representation theorem for
commutative B*-algebras.

A
Theorem I. If A is a commutative B*-algebra, then x —> x is an

A
isometric *-isomorphism of A onto C0 (A).

A A

Proof We have seen that x -> x is a homomorphism of A into C0 (A).
The isometry of the involution in A is proved quite simply by the following
argument of Gelfand and Naimark [23]. For every he A with h* h the

B*-condition gives || h2 || || h ||2; by iteration || h2" || || h ||2" or || h ||

|| h2" ||1/2" and so || h || | h |ff. Tn particular || x*x || | x*x 1^. Since

o (x*) cr (x) we see that | x* |ff | x |ff. Hence using the submultipli-
cativity of the spectral radius on commuting elements || x* || • || x || || x*x||
« I x*x \a < I X* |ff I X \a I X |2 < || x ||2 and soj x* || < || x ||. Replacing

x by x* we also have || x || < || x* || ; Thus || x* || || x ||.
A

If A has an identity element we can now show that x -> x is a *-map.
We first show by two different arguments that (j) (h) is real for he A with

A
h* h and 4> e A.

Aren 's argument [3] : Set z h + ite for real t. If <fi (h) a + iß

with a and ß real then </> (z) a + i (ß +1) and z*z {h - ite) (h + ite)
h2 + t2e so that

a2 + (ß + t)2 \(ß{z) |2 < I z 12 || z*z|| < || fi2|| + t2
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or a2 + ß2 + 2ßt < I] A2 || for all real t. Thus ß 0 and 0 (A)

is real.

Fukamiya's argument [21]: Recall that in a Banach algebra exp (x)

Z^=0xn/nl. Set u exp (z'A). Then u* exp (-/A) and so u*u e

uu*. Since 1 || u*u || || u ||2 we see that || u || 1 || w-1 |[.
A A A

Hence | u (</>) | <1 and | u~x (</>) | <1 which implies | w (<£) | 1. Since 1

A
I u (</>) I I 4> (u) I I exp (/</> (A)) |, it follows that <£ (A) is real.

Now, if x e A, then x h + z'A with A (x + x^/2 and k (x — x*)/2i.
A

Since IF A, A* A, and x* h - ik we have for every (j) e A,

(x*) A
(</>) <j) (x*) — (f) (h — ik) (p (A + ik) <ß (x) — x (0).

Thus (x*) x; i.e. the Gelfand representation is a *-map. A
Next assume that A has no identity element. Since every <fi e A can be

extended to A
e it suffices to show that the norm on A can be extended to a

B*-norm on Ae. Suppose A is a (not necessarily commutative) B*-algebra
with isometric involution. Observe that for every x e A, || x || sup { || xy || :

y e A, || y || < 1 } Extend the norm on A to Ae by

II X + le II sup { Il (x + le) y || : ye A|| || < 1}
Then Ae is a Banach *-algebra in which A is isometrically embedded as

a closed ideal of codimension one. Since the involution in A is isometric
we have

I (x + Ae) y ||2 || y* (x + le)* (x + Ae) y J < || (x + le)* (x + Ae) || • || y ||2

Therefore || x + Ae ||2 < || (x + Ae)* (x + Àe) || ; hence Ae is a B*-algebra
with isometric involution.

A
This shows that x x is a î!<-map even if A has no identity. It is now

A
easily seen that x -> x is an isometry. Indeed :

||x||2 » fix** If \x*x\a ||(x*x) ||00=||(x*) *1(0« 1**11«,

\\x\ll,orI xf llxll«,.

Summarizing, we have shown that the Gelfand representation is an
A

isometric *-isomorphism of A into C0 (A). Let B denote the range of
^ A

x -> x. Then B is clearly a norm-closed subalgebra of C0 (A) which separates
A A

the points of A, vanishes identically at no point of and is closed under
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complex conjugation. By the Stone-Weierstrass theorem [29, p. 151] we
A A

conclude that B C0 (A) and hence that x -> x is onto. Thus the proof
of the representation theorem for commutative B*-algebras is complete.

The reader who is interested in an unconventional proof of the preceding
theorem may consult Edward Nelson [38, p. 78]. Quite simple proofs of the

Gelfand-Naimark theorem in the special case of function algebras have

been given by Nelson Dunford and Jacob T. Schwartz [14, pp. 274-275]
and Karl E. Aubert [5].

5. The Gelfand-Naimark theorem for arbitrary B*-algebras

The proof of the representation theorem for an arbitrary B*-algebra is

much more involved than the commutative case and it will be divided into
several steps. After having established that the involution is continuous we

will introduce a new equivalent B*-norm with isometric involution. An
investigation of the unitary elements will show that the original norm on the

algebra coincides with this new norm. The representation of B*-algebras will
then easily be effected by the well known Gelfand-Naimark-Segal construction.

General references for material in this section are [13], [37] and [43].

Step. 1. The involution in a B*-algebra A is continuous.

Proof [39, Lemma 1.3]. First we show that the set H (A) {he A : A*

h } of hermitian elements in A is closed. Let { hn } be a convergent sequence
in H {A) whose limit is A + ik, with A, k e H {A). Since hn - h -> ik we

may assume (by putting hn for hn — h) that hn converges to ik. The spectral

mapping theorem for polynomials [43, p. 32] gives aA {hi — h4) { X2

— A4 : Ae aA (A„) }; since | h || — | h\a and oA (A) is real (see the first part
of the proof of Theorem I, the Aren's-Fukamiya arguments and recall

A A

ga (A) A {A) u { 0 }) we have

I! hl - hlI sup { A2 - A4 : A e }

< sup { X2 :XeaA()} j fl

Letting n -> oo we obtain || — k2 — k4 || < || k2 ||. Hence

sup {A2 + A4 : A g <7A(k)} < sup [A2 : A e aA (k) }

Choose lie oA {k) such that fi2 sup [A2 : A e aA (A) }. Then jli2 + ju4

< ju2, so j! 0. It follows that || k || | A 0 and hence k 0.

This shows that H (A) is closed.
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