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pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1].
For further details see the references cited in the papers mentioned
above.

4. EXPONENTIAL POLYNOMIALS

We commence by making explicit some folklore the principles of which
can be found in [16] and Tijdeman [26], and which is made explicit in
another context in van der Poorten [20].

LemmA 5. For some fixed positive integer o, and some given function

g, supposed holomorphic in the domain under consideration, denote by

J the set of functions G of the shape
G(z2) = ‘ZZ=1 by g (a2) ,

where by, ..., b,; 04, ..., a, are complex numbers. Then, for all sets of non-
negative integers p (1), ..., p (m) with sum >3-, p(h) =0 (and all

~ positive integers m such that 1 < m < o), for each function F of the shape

F(z) = Zr;:=1 Zf:(? Ay z' 1 g(t—l)(a’hz) )

the a,, complex constants, there is a sequence of functions in J converging
uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape
F are actually, in a sense, particular cases of, rather than generalisations
of functions of the shape G. Indeed, reindex so that G' appears as

(17) G(z) = ZTZ=1 Zf:(f) by 9 (wp,2) ,

and choose the coeflicients b,, as functions of w;y, ..., Wp, (my (SO Of
Oy, ..., %,;) SO that for each A =1, ..., m

(t—1D!
2mi

(18) Zf=(f) by g (w,z) = f=(f) Apt Jc g (yz) 1_[:=1 (y _whs)~1 dy ,
where the closed contour C contains all the w,, but excludes any singu-
larities of g. Clearly there exists a sequence of o-tuples (W11, ..., @y (m) )
which converges to (wy, ..., ®W{; @3, ..., ®,) componentwise, and in the
limit, (18) shows that (17) becomes F (z).

I am indebted to D. W. Masser for any felicities in the terminology used
in the lemma. |
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The following theorem is a result due to Tijdeman [26], [27]; see also
Waldschmidt [36] p. 164-174. A history of the problem can be found in
the above mentioned works.

DEFINITION. Let p (1), ..., p (m) be non-negative integers with sum
Yot =0, let a, (h=1,..,m;t=1,..,p(h) be complex numbers
which do not all vanish, and let @, ..., ®,, be distinct complex numbers.
Then a function of the shape

I 1 W,z
(19) F(2) = ) =1 PP a2z et
is called an exponential polynomial of degree o, with frequencies w, and
coefficients a,.

THEOREM 1. The number of zeros n (F, R, z,) of an exponential
polynomial F of degree o and with frequencies @y, ..., w, satisfying
max, [ wy, [ < Q, inadisc of centre z, and radius R, is less than

(yr—-DO+1)

(20) gy 14 OR 4+
s 0" — R N S PP
log 7 y(y—1)log log f(y-—l)

Jorall y >t > 1.
Proof. We consider the exponential sum
G(2) = Yie1 e, max,| o, | < Q,
z; such

and suppose that z, = 0. In lemma 2 take g, (z) = e“* and ¢}, z;

that 1, = A —1,z, = 0(A=1,...,0) and observe that the determinant
A of lemma 2 now coincides with the Vandermonde determinant D of
lemmas 3 and 4. Then from lemmas 2 and 4 we obtain

Ssk A—1 Qs*h}t
> yo_ 1( )

(21) | G ls/| Gls < ) 5= 1(5 (h— M) e’

We observe that the information (21) is independent of the coefficients
of G and independent of min,, I w, — wy |; furthermore, under a trans-
lation only the coefficients of G change, so (21) is valid for all centres z,.
So by lemma 5 we have, writing S*/S = y > 1,

(QS*)h o—h J1—1
h' A=1
GQS* <})a c—1 (QS)h o—1 (QS*)h)

'Y _I h=0 X - h=0 i

IFlS*/lFIS<eQS* Z;(l)

(22)
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It follows that, with the gain of some tidiness, but the loss of some precision,

.. 1 1
(and noticing that — log <1 ——) < ————)
| v,y =1

1
log |Fls«/| Fls < (6—1)logy + ;}———1 + Q(S*+S) .

Finally let t = (S**+SR)/S* (S+ R) > 1; then lemma 1 implies that

1 1 —1 1
(23) n(F, R,z < - {(a—l) logy + —— + @R (VL)(?_I;)}
log = y — 1 y(y —7)
as asserted.

COROLLARY 1. If ¢ =1 then n(F, R, zy) = 0. For ¢ > 1 we have

(24) n(F,R,zy,) <3(c—1) + 4QR, (Tijdeman [27]
or

(25) n(F,R,zy) <2(6—1) + 5QR, (Waldschmidt [36])
or

(26) n(F,R,zy) <4(c—1) + 3QR.

Proof. The first remark is trivial ; we require ¢ > 1 in order to assimilate
the term 1/(y — 1) in (20). To obtain (24) choose, say, T = 3.5, y = 30,
and for (25) t = 3.5, y = 10, whilst for (26) = = 3.5, y = 110. Parameters
were calculated on the HP 65 belonging to John Conway, for whom see
Knuth [9].

Notwithstanding the apparent precision of our method, (20) gives quite
inadequate results in the asymptotic cases. For example, we know from
results of Polya [15] and Dickson [6] that limg. . » (F, R)/R < Q, but
(22) does no better than limg_, , # (F, R)/R < eQ. At the opposite extreme,
“ the local valency problem ”, M. Voorhoeve has shown, using an idea
of Hayman [8], that if ¢ > 4 then R <1/8 Q implies n(F, R) <o — 1,
but nothing like this precision is available from (20); incidentally, because
F has o coefficients, it is clear that in every disc, no matter how small,
one may have n (F, R) > o — 1.

Although theorem 1 is more than adequate for applications to tran-
scendence arguments, one can do better; for example Voorhoeve [31] has

4
shown that n (F, R ,z,) <<2(c—1) + - QR by a quite different argument.
T

Actually because the result in the exponential polynomial case is independent
of centre z,, lemma 1 is quite crude (note the “ extreme case ”’) because
it assumes that the zeros accumulate at a point near the edge of the disc.
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We now turn to a generalisation of theorem 1 wherein we show that an
exponential polynomial cannot be small at too many points. This result
largely includes earlier similar results of Mahler [10], Tijdeman [29] and
Cijsouw and Tijdeman [5]. As we shall see, theorem 2 actually contains

+ theorem 1 as a special case.

We shall retain, without further explanation, the notations introduced

~ in the lemmas above. In preparation for the proof of the theorem we require
~ two lemmas.

AR D L

LEMMA 6. Let
m  p(k) b
ks

F(z) = Dk a1 g
k‘—zl s=1 (S - 1)'

be an exponential polynomial of degree at most ¢ = Y p (k).

k=1
Write
m
D, = | H (wk_wh)p(h)la Q. =lw ], d, = min | w, — Wy,
h_1 h#k
hEk
(k=1,...,m)

Denote by 0 a real number such that (S0)°~' > (6—1)! and by S a real
number we shall suitably determine below. Then

m

| bys | <2777 D ’Hl (0 + Qhy ™~ ow d PO =) | | ¢
and in particular

[ bipao | <Dt [T (0+QhY = | Fls (k=1,..m:s =1,..,pkK))
h=1

Proof. Notice (compare lemma 2) that if A 2 ks 18 the cofactor of the
typical element in the ¢ X ¢ determinant :

A—1 .
s —1 wk

(here rows are indexed by the pairs (k, s) and columns by 1) then plainly

i (i - 1)' A},,ks dC
gl{ 2ni J\l“:S 4 F(C) F} ’

2

(27) | bes | < TF 15 )

A=1

A =

ks, A

SO
(A—1)!
S/l—-l

Aks

A4
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But

5 (A —1)! it A _{ (s—1D! (h,1) = (k,s)
P T T 0  (ht) # (k,s)

so A4, /4 is exactly the coefficient of z*~! in the polynomial Py (z) of

degree at most ¢ — 1 defined by the ¢ conditions

(s—=D! (h,t) = (k,s)
0 (h,t) # (k,s)

We now make a change of scale whereby we replace z in F (z) by z6; this
is tantamount to replacing each w, by w,/0 whilst each b, become b, /0.
We arrange that (S0)° ! > (¢ —1)!. Then (27) implies that it suffices to find
an upper bound for the sum of absolute values of the coefficients of P, (z).
There is a useful stratagem whereby one obtains such a bound, dependent
on the observation that if a polynomial P (z) has non-negative real zeros
then IP(-—I)I i1s the sum of the absolute values of its coefficients. For
formal details of the required generalisation of this remark see van der
Poorten [17], lemma 2.

One confirms readily that the polynomial P, (z) is given by the integral

oNs=Lomo g N p(h)
28  Pu(x) = — | 2™ n(z “’1) 0t

271 Jcp {—z 41\ —o,

Pl(c.ts—l) (o) = {

where C, is a suitable contour about w, excluding the other w, and formally
excluding z; in fact (28) is just a special case of an integral form of the
Hermite interpolation formula.

So

— p)=1 7 a\p)=s m _yr p() 1
Pks(z>=D,:1(Z 2 (a’c‘) Iﬂ : w\ - l

(p(k)—s)! ] :}( C—wk—lj C—ZJ
Wy — Wy, : (= wyp,
whence

(29) |Pks(—1) l < Dk~1 2“_5 H (1 +Qh)p(h)—5hk dl:(p(k)_.s)
h=1

But in the estimate (29) we have estimated the numerator as if Py (z)
were a sum of polynomials with non-negative real zeros 2, ..., Q,,. Hence
(29) gives an upper bound for the sum of the absolute values of the coef-
ficients of P, (z). Recalling the scaling we are assuming, (27) implies that

m

| bis | <277 Dt [T (04+Q)P @ omedy ¢C™ [ F [

h=1
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In the special case s = p (k) we have very simply that

m z —w, p(h)-éhk
Pkp(k) (z) = H <

h=1 \Wr — Wy

and the estimate for b, follows immediately from (27) and the argument
outlined above.

LEMMA 7. Let oy, ..., a, be distinct points such that
‘F =D (o)

G| S <

and

m

= | H (O(h'—ock)T(k)la |a,| = Ry <R, min | o, — o | = o
= k+#h
k+#h

(h=1,..,n;t=1,..,7(h) where T(1),....7 (n) are positive integers with

sum Y. T (h) =
h=1
Let S*, S be real numbers satisfying S* > S >0 and S* > R > 0.
Then.
S* " /S*(S +RO\'W
F < Fl* +
Fls< < —sﬂ(s*z +5Rk) | F s
n t(h) S * +R S+R t(k)
e XhtN—l 3N—1 A;l 1—[ <( *2}1 k)( k)> 5}_1_ (zr(h)—t)
h=1 t=1 k=1 S** + SRy

Proof. By an integral form of the Hermite interpolation formula we
have

1 % — G\
21t Jig)=5 (C)H<S *(C—o )> 4

n S#2 _ iz \ T
=F(2) ] (Tﬁk> +

— 2

r=1 \S8*(z —ay)
n t(h) F(t ”(oc) - n (5*2 . C&k t(k) dC
27” hzl tZ1 -0t JC, (& =) kI=—I1 ((S *(C —Ofk)) { —z

as can be seen directly by the Cauchy residue theorem; here C, is a suitable
contour about «, excluding the other o, and formally excluding z. By the

argument detailed in lemma 2 we have for l z ] =

n 5*2 — 7 (k) n S*2 + SR (k)
(o) |20 (swrm)
k_1 S*(z —oy) k=

(S*(S +Ry)
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and ‘
1 n S*Z _ C& T (k) dC S*
(31) lz— FO 1 (T___k> | < | F s " -
| T Jjg| =5 =1 \S*(C—ao)) -z S* — S

We select z such that | F(z)| = | F|, whence we may suppose that z
1s not near any «,. Then by explicit evaluation similar to that in lemma 6
we obtain.

1 IR A e 4 AN 4
(32) | G T T (s

2ni JCy, k=1 \S*(C—o) {—z

n *2 (k)
<N-1 3N—1 Ah—l H (S -t Rh Rk) 5;(1(;,)_;) .

The three inequalities (30), (31) and (32) together with the integral inter-
polation formula now readily yield the lemma.

THEOREM 2. Let
m  p(k) bk
S

F(z) = > >

k=1 s=1 (§— D!

be an exponential polynomial of degree at most o = ) p(k) (>1)
k=1

s—1 Oz

with

D, = | H (Cok_wh)p(h)l> |, | = 2, < 2,
h=1
h# k

d, = min |, — w,| (k=1,..., m)
h#k

Further let oy, ..., o, be distinct points such that

n
A, = | ] (= )*® |, o] = R, <R, min |, — o | = 6.
k=1 k*h
k% h
and

FO D ()
(t—1D!
(h=1,..n;t=1,..,1(h) where t(l),..,t(n) are positive integers with
Sum i t(h) = N.

Then ;’];1

< e < < X

N>2(c—1) + 5QR
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we have
n  t(h)

b < Dt di @979 GNAR)TTHY Y g NN A8 S0 (RN

h=1t=1

U d; 009 BNJAR)TLATI(SR)Y 7,

(where A = min 4,5,"®7%.  (k=1,..,m;s=1, .., p (k)

(h, t)
In particular for k = 1,...,m
n t(h)
| Doy | < D! (N/eR)*~* Z Z A N1 4,1 8, (R (5R)"
h=1 t=1

Proof. In the proof of theorem 1 we showed at (22) that

S* QSh GIQS*}'
(33) 1F13*<lFls;_1<(v _0( ) ( )>

h! h=0 h’

whilst lemma 7 gives an inequality

" (S*(S+RY\ W
34 F F s S + E
(34) [Fls<| lsy_lkHl<S*Z+SRk>
with
n  t(h) n (S*Z—I—R R)(S+Rk) (k)
=1 gi=1 Az—l h ™k 51—(r(h)—t)
hzl tz Xht I kI_:]:l ( S*Z 1 SRk )}

Substituting (33) in (34) thus yields an inequality of the shape

(35) |Fls(1=-Y)<E

with
pe®ST /(@S T (QSMM L (SH(S +R)\T®
66 v< (v Y - Y ) T em ) s
' (y—1) n=0 N n=o h! k=1 \8*" + SR,

and we require, in order that we obtain a meaningful result, that ¥ < 1.

- Firstly we simplify (36) as in theorem 1, and obtain on writing v =

| (S*2+SR)/S* (S+ R) that

(37 —log Y>Nlog 7 — (c—1)log y — Q(S*+8) — 2 log (y/y = 1)

We conclude that (seeing that the last term is insignificant) it suffices that

- N>n (F, R,0) in order that — log Y be positive. Moreover lemma 6

~ yields an inequality of the shape

o
ki

L 38) | b | < F |5 Zys

L’Enseignement mathém., t. XXIII, fasc. 1-2. 3




34
with

Ziy < 277D [ (0+Q) @ % dy 0=,
h=1

Thus (35) together with (38) gives

(39) | by | < IZ_’jSYE

which is of the shape we require. Then it remains to appropriately choose
parameters and to make simplifications so as to obtain a result in simple
shape.

For example select y = 10, T = 3,8. Then we may choose N = 2 (6—1)
+ 5QR and from (37) obtain that 1/(1—Y) < 3, (provided only that
o > 1). With this choice it suffices for the scaling of lemma 6, to choose
0 > 2(c—1)/eR at (38). By now suppressing all details (that is, replacing
all R, @, ... by R, Q, ... respectively) and estimating £ with the above
choice for the parameters we get

n  t(h)

(40) (SR)N Z Z N~y Ap Lo, W=D
h=1 t=

and

(41) Zy, < Dy 'dy ©®79(2/eR)’ ™ (2(c —1) +eQR)] !,

so certainly either
2(0—1
(42) Z, < D;td; PR~ {max (89 ( 2 )>} ,

or, more tidily, though less sharply
(43) Z,, < D;'d;*®~9)2NJeR)° ' <D 1d, °?®~s(3N/4R)* 1.
We further recall that if s = p (k) then (42) and (43) become respectively

o — 1 c—1
Zips < Di {max (49, . )} , Zipooy <Dg 1 (NJeR)© ™" .

These estimates yield the results of the theorem. .

One can of course obtain alternative estimates more suitable to a
particular application; in particular it would in practice be appropriate
to select the parameters, and thus S* and S, according to the relative sizes
of o — 1 and QR. |
We have made a point of specially mentioning the simpler bounds for
] brpy | because in typical estimations in transcendence theory one has the
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b,,, or even the b,,/(s—1)! rational integers; thus as soon as Ibkp(k) ] < 1
one has b,,qy, = 0 and then a fortiori one has sequentially by 1 = -
= b,, = 0 which eventually shows that F vanishes identically. Thus in
this circumstance it suffices to have an estimate only for the leading coef-
ficients of the polynomial coefficients.

In applications it is of course necessary to have good lower bounds for
the D, and the 4,. For some such estimates see Cijsouw and Tijdeman [5],
lemmas 5 and 6.

One case is of sufficient interest to mention specifically:

COROLLARY. If oy = 1,0, = 2,..,0, = R(son=R) and t(h)
= T(h=1,..,n), so N = RT, then
F @1 (h)
’ (t—1)!

and
N =RT>2(c—1) + 5QR,

implies that for k =1, ..., m

R T

| bepy | < D P(NJeRY ™Y Y 2 NTESRV((h—=DHR=B))T
h=1t=1

< DY (N/eR)” 1 30" 4

Proof. Note only that (h—1) ! (R—h)! > 27 R=D (R—1) | > (R/6)F;
(by sharpening lemma 7 for this case one can improve the 30 to about 15).

5. FURTHER RESULTS

We consider some further applications of the method of this note.
It is instructive to observe that the success of these applications depends,
in effect, on forcing an analogy with the simplest case, that of exponential
polynomials. The methods of Hayman [8] applies to a different class of
functions, which does however intersect with the class considered here.
For an example of this different method at work, see Voorhoeve, van der
Poorten and Tijdeman [33]. In this context see also Voorhoeve and van der
Poorten [32]; the ideas here however relate to the new method of Voor-
hoeve [31].

Continuing to use the notation of the previous sections, we observe
that if in lemma 2 we take f;, = A — 1, z; = 0 and g, (2) = g (w;z) where
g is given by (14) then the ratio 4,, ,/4 of lemma 2 is given by
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