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Theorem B. Let m, x> /? be as above. We put

T-T m
q n p ' * /ïpfm 74

where p denotes rational primes. Let the multiplicative function g be defined

by

g n)n (0, q))(p((«, (n).
Then we have :

«(«,/) 0 if iî ^ a ]

&(Rn,x) g(q)(«)T (t/0 -R fir (n), n 1,2,... |

2. Proof of theorem B

For a Dirichlet character x mod m let the function L(s, x) be given by
00

Us, X) E x(n)n11

The series defines an analytic function for Re s > 1, which can be extended

to a meromorphic function on the whole complex plane, with at most one
simple pole at s 1. If x is primitive, then L(s, x) satisfies the equation

(7lis
nis\e2 (4)

Because of (1), this can also be written, for Re s > 1, as

/ 7lis 7nis\ ^
L(l-s,x) m'-1(2nr'r(s)[e~ 2 +z(-l)e2) (5)

1

Whereas (4) holds only for primitive characters, (5) turns out to be valid
in the general case. In fact, a much more general formula is proved in [3],

th. 6.1 ; if we put there x a 0, an x (") and observe that — n, x)

x (~~ 1) & {n, x)> we (5) immediately. But also most of the classical

non-adelic) proofs of (4) will give (5) after very small changes. The only
use of the primitivity of x in these proofs is that they replace & (;n, x) by

X (in) t (x) at some stage (See for instance [7]).

Now let x, w, \j/9f be as in the theorem. We have, by the Euler-product,

L(l-s,x)
p\*\ J (6)

L{1 -s, t//) n(q) 5-1 \j/ (q) [] (1 O)
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Formula (4) is valid if we write/for m and \jj for x- Eliminating L (1 - s9 x)

and L(l— s, \j/) out of the equations (4), (5), (6), and taking into account

that % (— 1) xj/ —1)? we obtain after an easy calculation, for Re s > 1 :

00
_ „ p\l/ (p)\

£ ${n, x) n~sRt(i/O nq)ij/(q) R s L(s, iA) II 1

1 p\q \ P J

Using Euler's product, we have for Re ^ > 1

-pïï (P)P~s)
p\q

oo oo

n z $(pk)p~ksn i1+(! -p)z$(pk)p~ks)
pj/q /c 0 p|4 k= 1

— ksn z "A (/) p ((pk> <?)) v ((pk> i)) p
p 0

00 00

n Z g(pk)p~ksZ g(n.p fc 0 1

If we put that into (7) we get

00 00

,x)«~s R^Wp(g)^(g)Jlg(n)(Rnys,
1 1

and we obtain (3) by comparing the coefficients.

3. In this section we show that one can prove theorem ^4 using theorem B
and conversely. Let K (a) resp. H(a) be the right hand side of (2) resp. (3).
We want to prove K (a) H (a). First we show that K (a) ^ 0 iff H (a) # 0.

Now H (a) # 0 iff R\ a and (<otR~1,f) 1, and this is equivalent to

(.ccfqjm) m (8)

On the other hand K (a) / 0 iff the four conditions hold

(a, m)f\m (9)

m
is squarefree (10)

,/\=l (11)

(a, m)f

m

(a, m)/

1 <12)



At several places in the following we will use that q is squarefree, (f, q) 1

and the prime divisors of m are precisely the prime divisors of fq
YYl

Let us assume (8). Then /(oc, m) \f (<xq, m) m. Also
(ocg, m)

(cc, m)

/(oc, m)

q. This proves (9) and (10). From/ m/faq, m) we have

(a/(a, m),/) (a/(a, m), m/(ocg, m)) | (oc/(oc, m), m/(a, m)) 1

This proves (12). Finally

m

(oc, m)f
//(^?m) \

'V " V(a,m)/ 'V ($,/) 1

proving (11).

Conversely assume (9)-(12). From (10) and (11) we infer that

This implies

m
q.

m m
(oc, m) ./ m oc/

/(oc, m)
m/

/(a, m)

(qaf,mf). (13)

Also

/(m, g oc) /(a, m)
(oc, m) (oc, m) / (a, m)

m

(oc, m)
>4

In the last term, the numbers / and (mj (oc, m), #) both divide m/(a, m),
because of (9), and they are coprime, hence their product divides m/{a, m).
This gives/(m, #a) | m. Together with (13) this implies (8).

It remains to prove that iF(oc) K (a) for a («,/) 1. We have

m0 m/(oc, m) fq!(njq) fq/(n, #). Hence

m (m) cp (m) (m)

/<? <?(/«) <p(f)<p(q) (/) 1" (("> 3)) 1° ((Tiff))

C/9 (m)

hence
<p((n,q))<p(m0)

R<p((n,q))

Also fi(q)ii ((«, n (q/(n,q)),so

H(q)li((n,q))n(ql(n,q))

Finally a0 «/(«, q), so a0^ nmjf,
hence

(14)

(15)
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\j/ (a0) ij/ (q)4/(\p (n)

or

\j/ (n) \p(q)\p(cc0)iA (16)

Multiplying (14), (15) and (16) we find i£(a) 7/(a).

4. Special cases

(a) Theorem B implies that t (x) # 0 if and only if R 1, that is, if
and only if mjf is squarefree and has no common divisor with /. We have

then
m\ m\

Hx)v(-U(j)?0A) (17)

and

^0, X) #OMx) (18)

On the other hand, if mjf is not square free or has a common divisor with /,
then the right hand side of (17) is zero. So, (17) holds for any character x-
For another proof of this see [4], p. 148.

(b) If x Xo principal character mod m, then / 1, \j/ 1, t (\jj)
1, q m =* squarefree kernel of m9 R m/m, and ^ (a, Xo) Cm (a)
Ramanujans sum.

Theorem B gives the well-known formula:

Cm (a) 0 if Jf a
m

m \ m ~
Cm — n) — n(m)/I ((w, m)) cp ((w, m))

\m J m y

From (17) we get for all m

Cm(l) // (m).

5. Remarks: (a) It is clear that ^ (a, x) cannot vanish identically.
So by 4. (a), formula (1) can only hold if R 1, and if g (oc) x (oc) for
all a. But this is only possible if q 1, i.e. if m /. This shows that (1)
characterises primitive characters, a fact proved by T.M. Apostol [5].
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