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9
e; =1/ # E(S;), where # denotes cardinality. We now define the “number
of representations of 7" by the genus of S” as

es A(Sy, T) + oo 4+ ¢, A(S;, T)
ey T ... T 6

A(genus(S), T) =

Now S is a real symmetric matrix, and so we may view it as a point
in R™, where n, = n(n+1)/2. Similarly, T is a point in R™". Let dt be
the usual measure in R™', and let dx be the usual measure in the real
vector space of m X n matrices. Given ¢ > 0, let B, denote the ¢-neighbor-
hood of 7 in R™', and let C, denote the set of x & M, ., (R) satisfying
S [x] ¢ B,. Then B, and C, are open sets with compact closure, and the
following limit is known to exist:

A, (S, T) = lim | dx/ [ dr.

e—0 Ceg B¢

‘THEOREM (Siegel [4]). For m — n = 3,
A4,(S,T)

qmn —(m+1l)n/2 "

(S) A (genus (S), T) = A, (S, T) lim

4. DERIVATION OF SIEGEL’S THEOREM

Let G ={geSL(m):S[g] = S},and let X = {xe M, «,: S[x] = T}.
If m > 4, both G and G, have fundamental groups of order 2. Condition
(c) of § 2 is the classical Witt theorem for (G, X). We assume that Xg is
nonempty.

We will show that (4) implies (S). This reduces Siegel’s theorem to the
computation of the Tamagawa number 7 (G).

Let &, = the constant function 1 on Xy, and let &, = the characteristic
function of X. z, 0 Xo . Then & = &, - [] @, is the characteristic function
of Xs = Xg ' [] sz in X,. Because of the positive definiteness of S,
@ has compact support.

Consider the right-hand side of formula (.S). Siegel has shown that there
exists an algebraic gauge form dx on X such that 4, (S, T) = | dx,, and

XR
A (S, T)

lim omn — (n+l)n/2 = H j dxp 2
qa 4 p XZp

where dx and dx, are the positive measures induced on Xg and X, Qp bY dx.
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It remains to identify the left-hand sides of (4) and (). First we analyze
the denominator of the left-hand side of (A4). Since 7(G) = 1(Gy)

= 2([5]), this denominator is [ dg. Now G, admits a double coset
GA/GQ
decomposition

GA_:: GSOOO'1 GQ"'GSOOO-hGQ'

Then, following Tamagawa [5].

dg =
(GS00iGQ)/GQ

h
2.
1
h

=2 | dg
1 (o':leooaiGQ)/GQ
h
2
1

dg ,

(G—ilGSooUi)/G(Gi)

where G (6;) = 0; ' Gy, 0; N Go. This reduces to
e
1 68w dg-Ye;.
£G) ~ 4,72

A similar reduction applies to the numerator. First observe that for our
choice of @,

Y, P(9x) = #Xqng ' Xsy)

xeXQ
= #(gXQ a XSoo) .
Then

J S ®(gx)dg = | #(9X o N Xs,) dg

G4/GQ xeXQ A/GQ

=y | #(9Xq N Xs5) dg =
(GS00iGQ)/GQ

= Z Jf #(O-igXQmXSoo)dg
(o

~165009,6Q)/GQ
il

# (6:9gXq O Xso) dg

(6-1G500i)/G(0;)

€; j # (g0 X g N Xsq) dg
GSw
h

G
h
1
h
=2
1
h
= .
1
=Ye | #0Xqng 'Xs,)dg
1

GSw
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I

h
e f #(UiXQnXSoo)dg

1 GSw

h
= f dg‘zei#(giXQnXSoo)-
1

GSwo

The left-hand side of (A4) therefore becomes

h

h
j dg'zei#(aiXQmeoo) Zei#(di/YQmXSoo)‘
1 1

GSw

h P
[ dg-Y e Y e
GSw 1 1

The following result completes the identification of the left-hand side of
(A) with 4 (genus (S), T).

PROPOSITION. 4 (S;, T) = 4 (0, Xq N Xso)-

Before giving the proof, we reinterpret the matrices Sy, ..., S;. G4 acts
on the set of Z-lattices in Q" as follows: for ¢ ¢ G, and a lattice L, ¢ * L 18
the unique lattice satisfying

(c*L)® Z, = 0,(LOZ,),
for all p.

The matrix S defines a quadratic form on Q" by ¢ (x) = S [x]. Consider
the lattices o, * Z", ..., g, * Z". In each lattice ¢; * Z" choose a Z-basis,
and let S; be the matrix of ¢ with respect to this basis. Then S}, ..., S, form
a complete set of representatives of the 4 classes in genus (S) (see [7]).

Decomposing (SL,)4 = (SL,)se (SL,)o we sec that each ¢;e G, can
be written o; = u; a;, where u; & (SL,,)s, a; € (SL,,)q- Then

o LT = a7t uit R = a2

= a7 *L" =a;' L™,

Let wy, ..., w, be the standard Z-basis of Z™; then a;' wy,..,a;'w
a Z-basis of 671 * Z™. The matrix of g with respect to this basis is

Si = S[a7'] = S[o][a7'] = S[oai'] = S[u].

1S

m

LEMMA. Let X; = {xe M, «,: S;[x] = T}. Then
(1 (Xi)Q = aiXQa
(2) (X)sow, = u—i_IXSoo'
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Proof of (1): Let xe X,. a;x&a; Xo < x is Q-rational and S [x]
I'< a;x is Q-rational and S, [a; x] = T < a; x & (X)),.

The proof of (2) is similar.

Now we prove the proposition.

A, T) = # XDz = #((XDo N (X)se) = # (a:Xo N7 ' Xs,,)
= #WaXqgN Xs,) = #(0XoN X g,) -
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