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CHAPTER 4. — LINEAR SUPERPOSITIONS

In this chapter we prove that there exist analytic functions which are not
representable by means of linear superpositions of smooth functions of one

variable.

§ 1. Notation

Throughout we assume that all the functions are defined and continuous
for all values of the arguments. If we say that a function is continuously
differentiable, we mean by this that its first partial derivatives are defined
and continuous for all values of the arguments; z = (x, y) is the point of the
plane with coordinates x and y; grad [¢ (z)] is the gradient of the function

0 0
g (z), that is, the vector-function with coordinates Eq and % ;
X y
2, 04,
'q4, ox 0
D (9_1;31_2) _ y
X, %4> %4
ox 0y

is the Jacobian of the pair of functions ¢, and ¢,.

q (D) is the image of the set D under the mapping effected by the func-
tion ¢ (x, y); g~ * () is the complete inverse image of the interval § on the
axis of values of the function g (x, y).

e (g, t) is the set of level ¢ of the function ¢ = ¢ (x, »).
7 (e, z) is the unit tangent vector to the curve e at the point z € e.

v (14, T,) 1 the absolute value of the acute angle between the vectors t,
and 7,.

h, (e) is the length of the set e.
d, (e) is the one-dimensional diameter of the set e.
0 (y) is a quantity bounded by a constant depending only on y.

p (Ay, A,) is the distance between the sets 4, and 4, in the sense of
- deviation, more precisely

p(A;, 4;) = max { sup inf p(z;,z,), sup inf p(zy,z,)},

z1€ A1 zge A9 z9e A9 z1e 41

~ where p (zy, z,) is the distance between the points z; and z,.
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§ 2. Estimate of the difference of the integrals of one term
of a superposition along nearby level curves

Let G be a region of the plane of the variables x and y, and ¢, (x, y)
and g, (x, y) continuously differentiable functions satisfying in this region
the following conditions: a) the partial derivatives with respect to x and
with respect to y have modulus of continuity w (J); b) the inequalities

1
0<y< | grad [q;(x, »)]| \; <o (i=1,2)

are satisfied everywhere in G, where y is a constant; c¢) for any point (x, y)
€ G the absolute value of the acute angle formed by the level curves of the
functions ¢, (x, ) and ¢, (x, ) which pass through this point is greater
than some positive constant y.

LEmMMA 4.2.1. Let e:m and 822 be two level curves of the function ¢,
and e;I and 621 level curves of the function ql, [a’ a’l =« G the segment
of the curve e;I with end-points a’ € e;,, and a’ eeqz, [6', b"] the segment
of the curve e, with end-points b’ €e,, and b" € e,,. Then

hy (b, 51) < hy ([’ @) x (1 ¢ () @ (3),
where ¢ = d; ([a', a") v [b',b"]) and c, (y) depends only on 7.
Proof. Since g, (a") — q, (@) = q, (b") — q, (b'), we have

0g, (a*

ACH - dq, (a*)
a——h ([a',a"]) = > hy ([b', b"]), Where»

0s

Consequently,

0q, (b*)

Js

and are the derivatives at the points a* € [@', a"] and b* € [b, b"]

dq, (a*)
0s

along the curves [d’, a"] and [b’, b"], respectively. We show that

an *)

+ O (y) w (6). We denote by ¢; the derivative of g, at the point b*

in the direction of T (ey,, a*) and put o = y { 7 [e,, b*], 1 [e;,, a*] }. From
q, (a *)

S

conditions a) and b) it follows that g5 + O()w (5) and «
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= O (y) w (5). We denote by B, and f, the values of the angles formed by
the vectors t [e:z/p b*] and 7 [e; » @*] with the vector grad [q, (b*)]. We have

0q, (b* :
a3 - -qza(s L= erad [4:6%]] |eos By — cos fy| = O()e
= 0(y) w(9).
Thus,
0q, (a* , 0q, (b*)
L) romoen =2
0s
g, (b™)) 04, (b*) ~
+O(1){ qs — q:( ) +w(5)} = — 263 + OB o) .
Consequently,

, 0q, (a*) (g, (b*)\ ™
hl ([b,—‘ b//]) = h'l ([a’,a”]) qasa < qas >

0q, (b*)\ 71
= hy([a’,a"]) <1+O(y)a)(5)< ﬂ?( )> )

s
= h ([a,a N1 +0 D o B)),
04, (b*)

since by virtue of b) > | grad [gq, (b™)] | sin y. This, proves the

lemma.

LemmA 4.2.2. Let gq,,(x,y) (m=1,2,..., N) be continuously differ-
entiable functions. In any region D we can find a subregion G < D, deter-
mine a constant 7y > 0, and renumber the functions { q, (x,y)} with two
indices so that the functions

qi—‘(x,y) =q,x,y) (=0,1,2,...,n; k=1,2,...,m;; Z m; =N)
i=0

obtained after the renumbering satisfy the following conditions :

(1) when i=0,q;=const in G, and when >0, y<|grad
| 1
[47 (x, ]| < = for every point (x,y) e G;
Y

(2) the functions q'%(x,y) (i>0 fixed, k=1,2, ..., m,) have in the
region G identical sets of level curves, more precisely, in the region G,
g% (x, y) = %! (q,' (x, y)), where ¥ (1) is a strictly monotonic continuously
differentiable function of t:;
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(3) when i # j(i, j#0), then for any k and | the absolute value of the
acute angle formed by the level curves of the functions g (x,y) and g Jl (x, ¥)
which pass through an arbitrary point (x, y) € G is greater than .

Proof. By the continuity of the partial derivatives of the functions
{ ¢ (x, ) } there exists a subregion G* = D inside which for any function
q. (X, y) either grad ¢, (x, y) = 0 or | grad g,, (x, y) | is greater than some
positive constant. From the continuity of the partial derivatives of the
functions { g,, (x, y) } it follows also that there exists a subregion G** <= G*
inside which for any pair of functions ¢, (x, y) and ¢, (x, y) one of two

q”&>}: 0 in G**, or for every point of G**

X,y
the level curves of ¢, (x, y) and ¢, (x, y) that pass through this point intersect

q,,qi> # 0 in G**). From the implicit function

X, V.
theorem it follows that there exists a subregion G < G** in which condi-

tion (2) is satisfied for every pair of functions ¢, (x, y) and ¢, (x, y) with

conditions holds: either D (

at a non-zero angle (D(

gradients different from zero and with determinant D <q,, qs) = Q.
X,y

We now renumber the functions { g,, (x, y) } with two indices in such a
way that only functions constant in G have lower index zero, and the same
lower index is assigned to those functions whose level curves coincide
identically in G. This proves the lemma.

We consider in the region G a superposition of the form ) > p, (x, »)
i=0k=1
f5(q% (x, »)), where {f%(#)} are continuous functions of one variable,

1% (x, ) } are continuous functions satisfying in G the condition ] Ph(x, )

< —and { g% (x, y) } are continuously differentiable functions satisfying in G
Y

conditions (1), (2), (3) of Lemma 4.2.2. Let w (6) be the common modulus of
aqs (x,y) g5 (x,
qi (X, ¥) . %ai S22
0x oy
[a', a"] and [b', b"] be segments of the level curves of the functions { g% (x, ) }
(i>0 fixed) lying in G. Let

o = hy([a’a)); 6 = p([a’,a"], [b,b"])

continuity in G of the functions {pf‘ (x,¥);

g = sup | ;O 121 pi (e 05 (g7 (6, ) |
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m = max sup |£4(d (5, 0) |
i,k
where sup is taken over all points (x, y) € [¢, a"] U [b', b"].

LEMMA 4.2.3. If & is sufficiently small (w (0) < C, (y)), then for any
i >0

| J ZL pi () f% (g5 () ds — Jv i pr ()75 (g5 (s)) ds‘

sela’,a”] se[b’, b” ]
< C5 () (ae + maw (8) + md) ,

where the constants C, (y), C5 (y) depend only on 7.

Proof. By (1), (2), (3) there exists a sufficiently small constant C, (y)
and a sufficiently large constant C; (y) such that if w (6) << C, (y) and for a
point a € [a', a"] the inequalities A, ([¢', al) = C5 (y) 6; hy ([a, a"]) = C;5 ()9
are satisfied, then for any j # i (j>0) the level curve of the function qj-‘
that passes through a intersects [b’, b"] of the level curve of ¢%. Suppose that
o > 2C5 ()0 (if « <2 C5 () 0, then the assertion of the lemma is trivial)

~ o~

and suppose that the segment [a’, a”] of the level curve of ¢f is such that

~ o~ ~

@', d'] = [d,a"] and hy ([, a]) = hy ([d",a"]) = Cs () 6. On the arc

[a’, a"] we fix a system of points ay, a,, ..., a, (a'=a,, a"=a,), uniformly
distributed along the length of this arc, and denote by b, the point of inter-
section of [b’, b"] with the level curve of qf that passes through a, (here
Jj #i should for the time being be regarded as fixed). Using Lemma 4.2.1
we have

J p; ()5 (qj () ds — f p; (9)f5 (4 (5)) ds

Se[al, an] Sé[b’,b”]

- J o ()% (4 () ds — f p5 ()5 (45 (5)) ds

sefay, ay] ‘ selby, byl
+ O (y) mo
= lim l Z p; (a) f5 (45 (a)) hy ([a,, a,41])

- Zl 25 (0 f5 (a5 (b)) hy ([bys byii]) | + O () mo
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= lim | Z pj (Cl )fj (qJ (CI ))h ([ai’ar+1])

V> r=

- Z_ P} (@) £ (a5 @) hy ([a, a,a1]) (140 (3) 0 (5))

+ X (i (@) = i (b)) S5 (a] (@) by ([bys bris]) | + O () mo

= lim | f p; (@) f5 (45 (a) by ([ay, a,41]) O () @ (5)

V=0

+ ‘Zlf'} (45 (@) iy (b1, by44]) O ) @ (8) | + O () mé

= O (y) maw () + O (y) maw(8) + O (y) mé = O (y) m (6 +aw (9)).
Then

T | m;
> i (s)f% (Qf (s))ds — J > pr(s)f% (q'f (s))ds
J k=1 k=1 '

Se[a,, a//] Se[b,, b//]

r noom; noom; ‘
< 2 2 pi(9)fi(gi () ds — J W ACHICHOILS
se[.il’,fl"]l_Ok_l se[b',b”]l_ =l
mJ mj

+ 3 | TEOREOs - | Y A0s@e)es

[ #i k= -

7z sefa’,a”] : Se[b'ab”]k 1
< Cy(y) ae + n(max m)) Cs(y) m (6 +aw(0))

j#i

< Ca (y) (e + md + maw (9)) .

This proves the lemma.

§ 3. Deletion of dependent terms

On a bounded closed set D we consider the space of linear superpositions

of the form ) p.(x,»)fi(q(x,»), (x,y)e D. Here the functions
k=1

{ pr (x, ) } and ¢ (x, y) are continuous and fixed, and { f; (¢) } are arbitrary
continuous functions of one variable. We assume that the function g (x, y)
is such that for any sequence t,e¢q (D) — teq (D) we have p[e(q,t,)
N D,e(q,t)n D] - 0. We put

/,{(tpquﬂpl""vpm) = inf sup l Z Ckpk(xﬁy),D

{ck} (x,y)ee(q,t)nD k=1
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where inf is taken over all sets of numbers { ¢, } for which max | ¢, | = 1.
k

The function A (¢, D, g, { p; }), as a function of ¢, is defined only on the set
q (D).

Lemma 4.3.1. The function A (t, D,q,{p.}) depends continuously
on t.

m
Proof. The linear combinations ) ¢ p, (x, y) for all possible systems
k=1
of numbers { ¢, } for which max | ck| < 1, form an equicontinuous set
k

of functions, considered on the bounded closed set D. Consequently, for
any ¢ > 0 there is a 6 > 0 such that if | 7, — 7, | < J, then

m m

| s [ Yan|- s | antnn] <

(x,v)ee(q,t1) k (x,¥)ee(q,t2) k=1

simultaneously for all systems of numbers { ¢, } such that max { € f < 1.
k

For definiteness, suppose that A(¢,, D,q, {p.}) = A(ty, D, g, {pi}).

m

Since the expression sup | Y cwpr (X, y)[ depends continuously
(x,y)ee(q,t1) k=1
on the coefficients { ¢, }, there exists a system of numbers { ci} such that

max | ¢ | = I and
. .

m

/l(t’laDaqa{pk}) == Sup l Z Clipk(xay)l'
(x.y)ee(q,t1) k=1
Since
}“(tZDDa Q>{pk }) < sup , Z C’Isl'pk (X, y) ’
(x.y)yee(q,t9) k=1
we have

m

0<2(t) = A(t) <  sup | Y elp(x,))]

(x.y)ee(q,t9) k=1

— sup | Zl c:,ﬁpk (x,y) ] < €.

(x,y)ee(q.t1]) k=

This proves the lemma.

LEMMA 4.3.2. The function 1 (t, D, q, { p: })  depends continuously
on D in the sense that there exists a function u(g) - 0 as ¢ — 0, having the
property : if the set D, = D is such that, for any t, D, e(q,t) forms an
e-net in the set e (q,t) n D, then
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max | 1(t, D¢, {p}) = 2(, Dy g, {pe}) | << () -

teq(D) ‘
n
Proof. Using the equicontinuity of the set of functions Y, ¢, p, (x, )
K=1
where max | ¢, | << 1, we conclude that there exists a function u(g) — 0
k

as ¢ — 0 such that the inequality

0-< sup I Z CkPk(XaJ/)' - sup I Z by (X, J’)! Zu(e). r

(x.y)ee(qg,t)nD k=1 (x,y)ee(q,t)nDg k=

uniformly over all te€ ¢ (D) and over all systems of numbers {¢,} for
which max l c,cl < 1. For any ¢ > 0 there exists a system of numbers
k ,

{ ¢; } such that max | ¢;| = 1 and
k

AMt, D, q,{p}) = sup | Z cepr (x, ) |-

(x,y)ee(q,t)nDg k=
Since for any ¢

l(taDaqa{pk}) {:; sup ! Z Clipk(xny)!

(x,y)ee(q,t)nD k=1

and, on the other hand, A (¢, D,q, {p,}) = A(t, D,, q, { p }) (we recall
that D, < D), we have

O‘{;}'(z’:Daqa{pk})_i(taDaaqa{pk})< sup ! chipk(xay)l

(x,y)ee(g,t)nD k=1

- sup | Y an(ny)| <ule).

(x,y)ee(q,t)nDg k=1

This proves the lemma.

LEMMA 4.3.3. Let F be a closed set on the t-axis, F < q (D). For
every te F, suppose that there exists one and only one system of numbers

{ Ce ) (max | C|=1) suchthat Y, Cyp,(x,y)=0 ontheset e(q, )N D.
k k=1 :

Then each of the functions { C,(t)} depends continuously on t on the
set F.

Proof. Suppose that 7, € F te Fand ¢, — t. We put lim C.(t) = Cy

n—oo

and lim C, (¢,) = Ck Since Z C,(t)p.(x,y)=0onthesete(q,t,)n D

and ple(q,t)n D,e(q,t,)n D] - 0 as n — o0, we have Z Ckpk (x, ¥)

k=1
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m ~

= Y Cypx(x,p) on the set e (g, 1) N D. Consequently, by the condi-

k_1
tion of the lemma, C,\ = Ck = (, (¢). This proves the lemma.

LEMMA 4.3.4. Suppose that 1(t, D, q, { py }) =0 on some non-empty
portion & of the set q (D). Then there is a non-empty portion 6* < ¢ and
an index | such that for any continuous functions {f.(t)} there are con-
tinuous functions {fy (t)} such that

m

Y L@ ) ey = Y fild () pe(x, )
k+1 k=1
on the set q~' (6%) N D.

We recall that a portion § of a set E is that part of it which lies in the
interval 0.

Proof. We prove the lemma by induction on m. For m = 1 the asser-
tion of the lemma is obvious. We denote by 0, the set of all points ¢ of the
portion o for which A(z, D, g, pys «os Pk—1s Pk 15 - Pm) = 0. By Lemma
4.3.1, the set is closed. Two cases are possible.

1) For some k the set §, contains a non-empty portion &, of the set
q (D). Since A (1, D, @, Pyy oo Puc s Prs 15 s D) = 0 for every ted,, then
by the inductive hypothesis there is a non-empty portion §* < §, and an
index / # k such that for any continuous functions f; (¢), ..., fi— (£),
Jis1 (O, ooy £y (t) there are continuous functions f 5 (¢), ..., fr—1 (), f i1
(t), ..., f o (¢) such that

Y filaxo ) pix,y) = 3 5 (g (x,0) pi(x, y)

i#k i#k,l

on the set ¢ ' (6%) n D. Putting £ () = f, (t), we obtain

fila G, ) pi(x, ) = Y fi(ax,»))pi(x,p).

i #1

—_1

i:

So in case 1) the lemma is proved.

2) None of the sets ¢, contains non-empty portions of the set g (D),

m

that i1s, U ¢, is nowhere dense in ¢ (D). Therefore there exists a non-
k=1
empty portion 6* = &\ U d,. Since A(t, D, ¢, { p, }) = 0 on &%, for every
k=1
t € 0* there are numbers { C, (1) } (max|C,(r)| = 1) such that Y C,
k

k=1




e
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(g (x, ) pi(x,y)=0 on e(g,t) n D. If we had C,(¢) = 0 for some &,
then it would turn out that ¢ € §,. Consequently, C, (¢) # 0 for any k. We
show that for every t € 0* the numbers { C, (¢) } are uniquely determined.
Assume the contrary. Then there are numbers { Cy (1) } (max ] C, (¢) l= 1)

such that Y G (g (x, V) (x, ) =0 on e(q,t)n D and C, # C,
k_1

for some k. Then

Y [C) CLt) = Ce) CL (] pe(x,) = Y Colt) pi(x, y) = 0

k#1 k#1

on e (g, t)’n D and in addition, C, # 0 for some k. Consequently, t € ;.
So we have obtained a contradiction, and the uniqueness of the choice of the
numbers C, (¢) is proved. Further, we may regard { C, (¢) } as single-valued
functions of ¢t on the portion 6*. By Lemma 4.3.3, the functions C, (¢)
are continuous and, as noted above, C, (t) # O for any ¢ € 6*. Then

py(x,y) = _Z —hgc%yg pe(x, ), (x,))eq™ " (6¥)nD.
. Cy (1) . -
Putting f (1) = /i (1) — - (t)fl (1), € 6%, we have 3 £ (q (x, ) pi(x, )
- =z Ck
= ka((ﬂpk(x,y) - Z . EZ; pi (x, )

|
i

= k;fk (@) pr(x, ¥) + f1(q) py (x, p)

l

S (@) pe(x,y), (x, ) eq (8% D.

k=1

This proves the lemma.

§ 4. Reduction of linear superpositions to a form
with independent terms

We fix the continuous functions pf (x, ») and continuously differentiable
functions ¢; (x, y) (1=0,1,2, ..., n; k=1, 2, ..., m;) n > 2, where { g; (x, y) }
satisfy in D conditions (1) and (3) of Lemma 4.2.2, and we consider in D
superpositions of the form

YOS A0S (4 xs 09)

i=0 k=1

where { 1% (¢) } are arbitrary continuous functions of one variable.

O AP TR S Y
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We call a bounded closed region G = D polyhedral if the boundary of G
consists of a finite number of mutually non-intersecting simple closed
contours that are unions of a finite number of segments of level curves
of the functions ¢; (x, y) i=1,2,..,n). Let G = D be a polyhedral region.
We denote by I'; the set of those t € g; (G) for which the set e (g;, )N G
contains a segment of a level curve belonging to the boundary of G. For
any i the set I'; consists of a finite number of points. By property (1) of the
functions { g; (x, )} for every i and for all points 7, € g; (G\I'; there

exists lim e (q;, 1) = e (qq, to). If 1o €', then the last assertion need not
t—1tg

hold, but in any case there exists lim e (g, 1) < e(q;, to) and lim e (g;, 7)
t— +ig t——1g

< e (g, t,) where the limit is taken over the points € g; (G). Here the
limit is understood in the sense of the distance p (e (¢;, 1), e (¢;, t0))-

LEMMA 4.4.1. There is a region G <= D and a system of numbers
=0 or 1(i=0,1,2,..,n;, k=1,2,...,m;) such that

(4) for any i and for any continuous functions {(p’f (t)} there exist
continuous functions { f§ (1) } such that in G

my

fi PE(x, 1) 05 (q:(x, ) = kZV s (x, ) fi(q; (x, )
k=1

(5%) for any polyhedral region G* < G and any i, the set
{t:2(t, G*, q;, piy ..., pF*) = 0}
is nowhere dense in q;(G*), where
ky = ki (@), ky = ky (i), .oy kg = k(i)

is the set of all values of k for which % = 1.

Proof. 1f i = 0, then by (1) the set g, (D) consists of only one point.
We choose a region G, = D and number 75 (k=1, 2, ..., m,) such that in G,
the functions pfl, ..., pks are a basis for the linear hull of the functions
{ ps } (condition (4) for i =0) and in any region G* = G, these functions are .
linearly independent (condition (5*) for i =0). Let G* = D be an arbitrary
polyhedral region. Then A (¢, G*, q, { pt }) as a function of t has, for
any i > 0, a finite number of points of discontinuity (of the first kind)
on the set g; (G*), which consists of a finite number of segments (see Lemma
4.3.1). Hence it follows that if the set { 7: A (#, G*, ¢;, {p§}) = 0} is not
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nowhere dense on ¢; (G*), then the function A (¢) = 0 on some segment
0 < g;(G*) not containing points of I';. By Lemma 4.3.4, there is a segment

6* = 9 such that in the expression Y pf(x, ) /% (q; (x, »)) one of the
k=1

terms can be deleted, without narrowing the class of the functions represent-
able in the region ¢~ ' (6*%) n G* as superpositions of the given form.
Carrying out all possible deletions we can find a region G = G, < D for
which the assertion of the lemma is satisfied.

A region G < D is called regular if, firstly, it is polyhedral and, secondly,
there is a number y; > 0 such that for every i > 0 and every ¢ € ¢, (G)
the set e (g;, t) n G is the union of a finite number of simple arcs, each of
which has length not less than y;. A point 4 of the boundary of the poly-
hedral region G is called a vertex if it belongs simultaneously to two segments
of the level curves of g; (x, y) and ¢; (x, y) (i # j) on the boundary of G.
Every polyhedral region has a finite number of vertices.

LeEMMA 4.4.2. For every polyhedral region G and every neighbourhood
U of the vertices of this region we can construct a regular region G* < G
such that G\U < G*,

Proof. Let A, A,, ..., A, be the vertices of the polyhedral region G;
U,, U,, ..., U, suitably small neighbourhoods of these vertices. Let k,,

= k,, (4,) be the number of all those functions { g; (x, y) } for each of |

which the level curve passing through the point 4, does not contain any
other points of the set U, n G. Let ¢;, (x, y) be one of these functions.
We put £k (G) € g; (G). If kK (G) = 0, then for any i/ and any t € g, (G) the
length of any component of the set e (g;, ) N G is greater than zero and
consequently the region G is regular. Suppose that k& (G) > 0 and m such
that k,, # 0. :

We fix ¢ > 0 and put

Gﬁlsm = G l {(xa y) |Qim(x9y) — Q(A;r)l < 8} M Um'

If U, and ¢ are sufficiently small, then inside U,, the region G{,, has two
vertices A, and A,,, while the region G has only one vertex A4,, there, but
k, (4,) = k, (4,) = k, (4,) — 1. We now put G} = n G,, where
the intersection is taken over all m such that k,, # 0. Then k£ (G Y = k(G)
— 1. Repeating this construction k (G) times, we obtain a polyhedral
region G* for which G\G* <« U and k (G*) = 0. Consequently, G* is
regular. This proves the lemma.

:
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LEMMA 4.4.3. There exists a set G <= D, a number A > 0, and a set
of numbers =0 or 1(i=0,1,..,.nk=1,2,..,m) such that condition
(4) of Lemma 4.4.1 is satisfied, and also the conditions

(5) for every i and te q;(G) and for any functions {f’ﬁ (1) |

.
2

e ‘ i ok (x, )T (g:(x, ) | > A max |15‘jf‘ (1)
k

(x,y)ee{q;,t)nG k=1

(6) G is a regular region.

Proof. By Lemma 4.4.1 there exists a region G* < D and a set of
numbers % such that for every polyhedral subregion G** = G* and for
every i the set {t:2(t, G**, q;, pi', ..., pi*) = 0} is nowhere dense in
g, (G**), where ki, k,, ..., k, is the set of all values of k for which § = 1;
moreover, on the set G*, for any i the property (4) of Lemma 4.4.1 is sat-
isfied. In order not to change the notation unnecessarily, we assume that
all T8 = 1. We now construct a system of regular regions G, > G; © G,
> ..>G, =G, having the following property: for every j < I,

inf A(¢, G, g, {pf }) >2;,>0. For G, we choose any regular
teqi(G;
reg]ion)GO e G*. Suppose that the regular regions G, Gy, ..., G;_; have
been constructed. We now construct the set G;. We denote by o4 the set
{t:3(t qs Gy, {P5)) > ). Since the functions 4 (1, ¢;, G;—1, { P }),
have only finitely many points of discontinuity (of the first kind) on the
set g, (G,_,), which consists of a finite number of segments (see Lemma
4.3.1), any component of «; is either an interval, or a half-interval, or a
segment, or a point. Suppose that the set o} = o5 consists of the N longest
components of non-zero length of the set o (if o5 has only Ny, (< N) com-
ponents of non-zero length, then let oy = }°). We denote by &5 the closure
of the set of. We put G,*, = G,_, n ¢~} (&@y). We fix ¢ > 0. Since G,_,
is regular, for every j the length of any component of e(g;, 1) n G,_, is
greater than yg > 0. And since the set {7:1(t,¢, Gy, {p5}) = 0} is
nowhere dense in ¢; (G;_,), for sufficiently small 0 and sufficiently large N
the set G, forms a ¢/2-net on every set e(q;,t) N G,_, j < i. The set
G, is a polyhedral region. We denote by U (¢) the set of points (x, y)
each of which is at a distance of no more than ¢/4 from one of the vertices
of the set G ;. By Lemma 4.4.2 there exists a regular region G, = G |
such that G |\G; = U (¢). The set G, forms an e-net on every set e (g;, 1)
N G,_y,j < iand forms an ¢/2-net on every set e (q;, ) N G;*,. By Lemma
4.3.2, for sufficiently small &,
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1 0
A = min inf  A(t, G, q;, {pf)) > imin {5, min AJ}.

J=i teqj(Gy) J<i

Thus, the regular regions' Gy, G,, ..., G, can be constructed. The regular
region G = G, satisfies all the requirements of our lemma (1=21,), which
i1s now proved.

§ 5. The set of linear superpositions in the space
of continuous functions is closed

THEOREM 4.5.1. Suppose that continuous functions p,, (x,y) and
continuously differentiable functions q,, (x,y) (m=1,2,..., N) are fixed.
Then in any region D of the plane of the variables x, y. there exists a closed
subregion G < D such that the set of superpositions of the form

N

Y P (X ¥) oo (@ (X, ),

m=1
where {f,, (t)} are arbitrary continuous functions, is closed (in the uniform
metric) in the set of all functions continuous on the set G.

By Lemma 4.2.2 and 4.4.3 we can find a subset G < D, determine cons-
tants y > 0 and A > 0, and renumber the functions {p, (x,»)} and
{ ¢ (x, y) } with two indices so that the functions obtained after the renum-
bering, {pi(x,»)} and {q¢%(x,»)} (i=0,1,2,...,n; k=1,2,..,my;

Y m; << N) that is, some functions may be omitted in the renumbering)
i=0

satisfy conditions (1), (2), (3) of Lemma 4.2.2, and also the conditions:

(4') for any continuous functions {f, (#)} there exists continuous
functions { f%(¢) } such that on G

Y pn (60 ulan () = 3 3 pECe S 0k (5, 2):

i=0

(5') for every i and 7€ ¢} (G) and for any functions { £ (¢) }

max | Y pr(x, 0 fi(qi (x, )| = A max |[fi(0)];
(x,y)ee(q %,t)nG = k

(6) G is a regular region with respect to the functions { ¢% (x, ») }.

P i e
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LEMMA 4.5.1.  In the sets { q; (G) } we can select subsets consisting of a
finite number of points t; ;€ gi (G) (i=0,1,2,...,n; j=1,2,..,5;) such
that for any continuous functions { f “(1) }

n  m;

max max |fi(t)|<Zc ((max | Y > Pk (e, ¥ (ai (x,9) |

Ik teq'li(G) (x,y)eG i=0k=1
k
+ max ‘fl (1, ;) D ,
Kk
where C is a constant not depending on the functions { f% (1) }.

Proof. Since G is polyhedral, for each /i we can choose in g;(G) a
finite set of points { #; ; } so dense that the components of ‘the level curves
e (q1, t; ;)N G form a é-net in the set of all components of the level curves
e(qi, 1) n G, teq: (G). A sufficiently small §, not depending on the func-
tions { £% (r) 1, will be chosen below. We put

= max max |ff(q;i(x,»)|;

ik (x,»eG
h m;
e = max | Y Y pFe /(i ()]s e = max £ ]
(x,»eGCG i=0 k=1 ki

For definiteness, let £} (q} (a)) = u at the point a € G.’ By (5') there exists

a point @' € G such that | Y pf(a)f1(q: (a))| =>Au. Let [a, a*] be a
k=1

segment of the level curve of the function ¢; (x, y) with end-points at a’
and a* such that A, ([¢', a*]) > yG/2 (see the definition of a regular region

y)

in § 4). On the arc [a’, a*] we fix a point ¢” such that w (a) < Pyl where
my

o = hy ([@’,a"]). Then on the segment [a’, a"] the function ¢, (x, y) =

mjy

= Y pr o fi(g:(x y)) keeps’a constant sign and satisfies the inequality
k=1

[ o (x,p) | > Auj2. In fact,
point s € [a’, a"]

@, (a) | = Au at the point a', and for any

’ - j, 1
[01() =0 (@)| = X (P18 = pL(@))fi(@) ] < mypo (o) < é
k=1
Consequently,
1
j ¢y (s)ds| = 5 AL

sefa’ a”]

By construction there is an index j and a segment [b’, b"] of the level
curve e (qy, t; ;) N G such that p ([¢, a"], [, b"]) < 6. We have

[’Enseignement mathém., t. XXIII, fasc. 3-4. 20
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| ei()ds| <cpef,

se [b', b”]

where f = h ([b',5"]), C; = m, max max |pf(x,y)|. And since o
: k (x,y)eG

and B are commensurable (6 will be chosen small in comparison with «),

1 ;
| ei(ds — | ei(s)ds| = - Aue — creso.
se [a’, a"]} ’ Se [b', b”] 2
By Lemma 4.2.3
T e ®ds — [ @i (s)ds | < ¢ (agy +paw () +ud) .

se [a’, a”] se [b'b"]

Thus, ¢ (ae; + pow (8) +ud) = Aua/2 — ¢; o - e,. If § is taken sufficiently
small in comparison with « (in order that c¢; (aw (8) +6) < Aa/2), then we
have u << C (¢, +¢,). This proves the lemma.

Let B be the Banach space consisting of all systems of functions { £ (¢) },
defined and continuous on the sets { ¢; (G) }, with the norm

1 {f5®}| s = max max [fi@®)] (i=0,1,2,..,n; k=1,2,...,m,).
i,k L

teq ; (G)

We denote by C (G) the space of all functions f(x, y) continuous on G
with the uniform metric:

”f(xay)“_C(G)z max lf(an)|-

(x, y) eG

LemMA 4.5.2.  The linear operator T : B — C(G) acting by the formula

T/ ®}) = f(x,y) = 2% i G fi(ah ()

maps bounded closed sets of B onto closed sets of C (G).

Proof. Let F < B be a closed and bounded set of elements of B.
Suppose that f, (x, y) is a sequence of functions in 7 (F£) < C (G), and that
f(x,y)e C(G), where || f(x,») = fn (%, ¥)|lc¢y = 0 as n > co. We show
that then f(x, y) e T (F). Since f, (x, y) € T (F), there exists a sequence of
elements { /¥, (#) } € F such that T ({ f{.(¢) }) = f, (x,»). By Lemma 4.5.1
we can select in the sets {qf (G) } subsets consisting of a finite number of
points ¢, ; € 7;(G) (i=0,1,...,n;j=1,2, ..., s, such that for each element
{f%(#) } € B the inequality

Hri O3 e e/ 0 ]e + max |fi)

)
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is satisfied, where the constant C does not depend on the functions {f"l (1) }.
Since F is a bounded set, there exists a subsequence of suffixes ny, n,, ..
such that for any i =0,1,..,n; k= 1,2,..,m;; j=1,2,..s; the
numerical sequence f’in‘, — C.;.; as v = oo. From this and the previous
inequality it follows that {f’;i,,,v (1) } e F(v=1, 2, ...) is a Cauchy sequence,
because it is known that the sequence f, (x, y) € T (F) is Cauchy sequence.
Consequently there exists an element {f%(z) } € B such that | { /(1)
— fﬁ,,,v ()} HB — 0. Since F is a closed set, { % (¢) } € F. The operator
T: B — C(G) is bounded. Therefore T ({ f% (¢) }) = f(x,y). Consequently
f(x,y)e T (F). This proves the lemma.

The following lemma from the theory of linear operators [28] turns out to
be useful.

LEMMA 4.5.3. Let B, and B, be Banach spaces. If a linear operator
T: B, — B, maps bounded closed sets of B, onto closed sets of B,, then
its domain of values is closed.

Proof of Theorem 4.5.1. The set of superpositions of the form

N
Y. P (X, ) fou (9 (x, ¥)) coincides on G with the set of superpositions of the
m=1 )

form Y Y pi(x, »)f%(gi (x, ). By Lemma 4.5.2 and 4.5.3 the set of the
=0 k=1

2

latter superpositions is closed in the space C (G). This proves the theorem.

§ 6. The set of linear superpositions in the space
of continuous functions is nowhere dense

THEOREM 4.6.1.  For any continuous functions p,, (x, y) and continuously
differentiable functions q,, (x,y) (m=1,2, ..., N) and any region D of the
plane of the variables x,y the set of superpositions of the form

2. P (%, 9) fo (Gm (x, 1)) 5

where {f, (1)} are arbitrary continuous functions, is nowhere dense in the
space of all functions continuous in D with uniform convergence.

By Lemma 4.2.2 we can find a subregion G* < D, determine a constant
y* > 0, and renumber the functions { ¢,, (x, y) }, with two indices so that
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the functions ¢% (x, y) (i =0, 1,2, ..., n;k=1,2, ..., m;; Y. m;= N) obtained 4
i=0

after the renumbering satisfy conditions (1), (2), (3) of Lemma 4.2.2. We
now fix the point (x,, yo) € G* and the number v so that the line (y — y,)
+ v (x—x,) = 0 does not touch at any of the level curves of the functions

g% (x,y) (i=1, 2, ..., n) that pass through (x,, ¥,). Let G¥* < G* be a disc

with centre at (x,, yo) and radius small enough so that the { g% (x, »)}
and gy .4 (x,y) = y + vx satisfy condition (3) of Lemma 4.2.2 with some
set G < G**, determine a constant 4 > 0, and again renumber the func-
tions p,, (x, y) and g, (x, y) (m=1, 2,..., N +1) with two indices so that the
functions p* (x, y) and

n+1

g (x,y) (i=0,1,2,...n+1; k=1,2,..., m; ; Z m; << N +1)

i=0
that is, some functions may be omitted in the renumbering) obtained after
the renumbering satisfy conditions (1)-(3) of Lemma 4.2.2, conditions (4')-

(6") of § 5, and the condition

T Mysy = 1, pyar = Pyar(X,)) = 1, qyer = dneg (X, 9) =y + vx,
Let L be the linear space consisting of all system of functions {f* () }
defined and continuous on the sets { q; (G) } and satisfying the condition

ni-1 m;

> Y pi e nfi(gi(x,y)) =0 in G.

i=0 k=1
LEMMA 4.6.1. L is a finite-dimensional linear space.

Proof. By Lemma 4.5.1, in the sets {q,l (G) } we can select a subset
consisting of a finite number of points { 7, ; } such that, if {f%(¢)}eL
and f% (¢, ;) = 0 for all k, i,/ then f% (#) =0 on g; (G) for all i, k. Thus,
the set of functions { 7% ( t) } is completely determined by a finite set of
parameters { /% (¢;,) }. Consequently the dimension of the space L is
finite. This proves the lemma. ’

LEMMA 4.6.2. There exists a natural number u such that in D the
polynomial (y+vx)* = Q(x,y) is not equal to any superposition of the form
N

> P (5 ¥) fon (@ (x,¥)),  where  {f,, ()} are arbitrary continuous
m=1

functions.
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Proof. We denote by @ the space of functions of the form f(y+vx)

= foer (@ne1 (x, y)) that are representable on G by superpositions of the
N

form [ Y pn (X, ) /o (¢m (x,»))]. Or, what comes to the same thing
m=1

n m;

(see properties (4) and (7)), of the form [ Y Y pf (x, ») f% (45 (x, »)].
=0 k=1
n+1 m;

Thus, functions of @ satisfy the relation Y Y ph(x, ») /% (¢F (x, »)) ==
=1

i=0 K
in G. Consequently the linear space @ is naturally embedded in L. Since L
is finite-dimensional (Lemma 4.6.1), & is also finite-dimensional. Let / be
the dimension of @. Since the polynomials (y+vx), (y +vx)?, ..., (¥ +vx)'*!
are linearly independent, at least one of them Q (x, y) = (y+vx)* is not
equal to any superposition of the form under discussion on G or, conse-
quently, in D. This proves the lemma.

Proof of Theorem 4.6.1. By Lemma 4.6.2 the set of superpositions of the
form given in Theorem 4.6.1 does not exhaust all continuous functions on G.
Consequently, by Theorem 4.5.1, the set of these superpositions is a closed
linear subspace of C (G). Hence we conclude that the set of superpositions
under discussion is nowhere dense in C (G), nor consequently in C (D).
This proves the theorem.

COROLLARY 4.6.1. For any continuous functions p,, (X, X5, ..., X,
and continuously differentiable functions gq,, (x{, x5, ..., x,) (m=1,2, ..., N)
and any region D of the space of the variables (x,, x,, ..., x,) the set of
superpositions of the form

N
Z pm(x17x23""an)fm(qm(xiﬁx27"'ﬂxrx)9 xZ’XS’ 7xn—1)’
m=1

where  { f, (t, X3, X3, ..., X,_1) }  are arbitrary continuous functions of
(n—1) variables, is nowhere dense in the space of all functions continuous in
D with uniform convergence.
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