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CorOLLARY 5.1.3. For any continuous functions p, and continuously
differentiable functions qy ;,q, ;5 ..., Gk < n (i=1,2,.., N) and every
region G, there exists a continuous function that is not equal in G, to any
superposition of the form (V).

§ 2. (g, 0)-entropy of the set of linear superpositions

We denote by S (0, z) the disc of radius 6 with centre at z. Let p (2)
= p(x,y) and g (z) = g (x, y) be functions defined in a closed region G
of the x, y-plane and having the properties: ,
aq (x, 0q (x, . X
a) p(x,y), q; ) , qg V) are continuous in G and have modulus
X y
of continuity w (9),

1 1
b) the inequalities 0 < y <{| grad [¢ (r)] | <—and | p (z) | <—, where
Y 7

y 1s some constant, are satisfied everywhere in G.

LemMMA 5.2.1. Let S(0,z) = G andlet p,(t) be the function equal to
2 \/ 6* — (t—q (2))* | grad [¢ (2)] |7 on

q(z) — 9| grad [q(2)] | <t<q(2) + 8| grad [q(2)]]

and equal to zero elsewhere. Then

[ L) = By (e(@. 1) S5, 2) | di < e, () (8) 5,
where ¢y (y) is a constant depending only on y.

Proof. Let [a,b] < e(q,t) n S (9, z) be the segment of the level curve
e(q,t), endpoints a and b, lying on the boundary of S (0, z); [z, a] and [z, b]
the vectors with origin at z and endpoints at a and b, respectively;

v, =y([z al, grad [q(2)]), @, = y([z,b], grad [q(2)]).
We have '
a—q— ds

lt—q()| =|q@ —q()]| = l § 5

se [z,a]

— 5§ cos oy | grad [g(2)]] (1 +0(1) w(d))
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Hence

o sin o, = /& — (1 —q(2) + 0() 0w (9)?| grad [q(2)]]?

and similarly

5 sin oy = /6% = (t —q(2) +0(y) 6 (9))* | grad [q(2)] |2

By b) the size of the angle swept out by the tangent vector to the level curve
e (g, t) on moving along [a, b] does not exceed C, (y) w (). Therefore

hy([a, b]) = 6 (sinay +sina,) (1 +0(p) @ (9))
= 2/8~ (t—q(2) +0(y) 6w (9))*| grad [q()]| > + 0() 6w (5).

Ifo; = C; (y) w (9) (Cs is a sufficiently large constant), then [a, b] = e (q, t)
N S (9, z). Consequently, for

1= q(2)| <0 = 5cos [C;w ()] | grad [9 )] ] x (1+0(1) w (8))
we have 7, (e (g, 1) n S (9, z)) = hy ([a, b]). Since for every ¢ (by b))

hy(e(g, 1) S(6,2)) <C,(MNS(l+w 9),

we have
J [ hi(e(@, D0 S8, 2) =, (1] dr =
q(z) +0
= J @D ns6.2) —u,0]é +00) 50 G).

We now estimate

4 (z) 4 O
S (@D nS(6,2) = () |dr =
q(z) —
q(z) 4+ @
= | |h(a,b]) = p,0)]dt <
q(z) —0
q(z) + O

<2 [ (J@-(1—9(2)+0() 0 (8)*]| grad [q()]| >

q(z) — O

~ /0"~ (t=q(2)*] grad [q (2] | ?)dt + 0() 6% ()

! d
= 0 F0() |y + 00 F0 ) = 06) 5% (0).

-1 L — 7

Here we have the mean value theorem. This proves the lemma.
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LemmA 5.2.2. Let p(z2),q(z) satisfy conditions a) and b); S (9, z)
< G; let f(t) be an arbitrary continuous function, uniformly bounded in
modulus by the constant m. Then

I i p (,9) f(q (u,v)) dudv

(u,v) e S (9, z)
= p@)| grad [g (][ [ 7O, () dt + A mF0 (),
where | A(z) | < Cs ().

Proof. Using a) and b) and Lemma 5.2.1 we have
I pu,v)f(qu,v))dudo

S(d,z)
=p ]  flg,v)dudv + 0(1) mé*w(6)
(u,v) eS (0, z)
=p(2) | {f(®) ( )jS(5 | | grad [q(s)] | %ds}dt -+ 0(1) mé*w (5)
— w0 see (g, 1) n ,Z) :

=p@| erad 0@ ] O [ dshdi +0G)mie ()

see (q,t) nS (9, z)

= p(@)| srad [g@]|7 [ )by (e(@, DS G, ) dt +0() mbo ()

= p() | grad [q@]]7* [ O, di + 00) mde (5).

This proves the lemma.

LEMMA 5.2.3. Suppose that a number o > 0 and functions p (z),
q (2), f(t) satisfying the conditions of Lemma 5.2.2. are given. If for every
integer k such that

o
min g (z) <t, =ko— < max ¢(2)
m

zeG zeG
and any integer | such that
, o
min | grad [¢(2)]| <t = 1— < max | grad [¢q(2)]],
zeG m zeG

the inequality

tk_}_t;é f—¢ 2
[AO Jaz --< "> dt | < 0d?

th—1,9 g
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is satisfied, then for every disc S (6,z) = G
| ] pw,v)f(q(u,v)dudv | < 6 (7) (20 +md*w (9)) -

(u, v) eS (0, z)

Proof. Suppose that a disc S (3, z) = G is given. By the condition of the
lemma there are integers k and [ such that |g(z) — #,| < da/m and
|| grad [¢ (2)]| — t/ | < «/m. From Lemma 5.2.2 we obtain

| p(2) ]
u dudv | < -
l(u, v) £S (s, z)p w, U)f(q w, 7))) e l 1 grad [q (2)]

g (z) +
+5lgrad [q (Z)]l

2 —~ 2 2 t"—q(z))
s () moe(9) /\)72‘ ! j i \/ ° | grad [q(2)] |

| I_I ormora

q(z) —

— 0] grad [q (2) 1]
z,mLt'a

f f(t)\/éz /"‘, k>2dt

t 1

2
+ — ad” + cs(y) mé*w (0) <
¥

(by the mean value theorem)

2 2 omdrt o
— ad® + ¢5(7) moé*w (d) + < J 7 2> o —
y .

m

1

2 52mdr ‘

+ — < /1 > 2 < < ¢ (p) (06” + m*w (9)) .
—17?

This proves the lemma.

WC denOte by En = m (D pla Pas - '7pN; CI1a qos ees QN) the set Of
superpositions of the form

f(xa y) = 'Zl pi(xay)fi(qi(xay))a Where {pi(x> y)}

and { g; (x, y) } are fixed functions, defined in the closed region D of the
x, y plane and satisfying conditions a) and b) with a constant y not depending
on i and {f;(¢)} are arbitrary continuous functions, defined on { [a;, b] }

= {[ min ¢;(2); max ¢;(z)]} and uniformly bounded in modulus by
ze D ze D

the constant m.
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THEOREM 5.2.1. There exist constants A and B such that if ¢ > Amw(5)
B /m\?
then for the (e, 0)-entropy of the set of functions F,, H, ;(F,) < F <—> ,

g
where A and B depend only on y, N and D.

—}3 Jf f(u,v) dudv
7o

(u,v)e S (4,2)

 Proof. We put
R(f(z),0) = max

S (3,z)=D

We denote by 7, ; (F,,) the e-entropy of the space F,,, taking as the distance
between the functions f; (z), f, (2) € F,, the number R (f; (z)— 15 (2), J).
The inequality H,, ; (F,) << o, s (F,) holds owing to the fact that if two
functions f; (z) and f, (z) are (e, 0)-distinguishable, then they are e-dis-
tinguishable also in the sense of the metric R (f; (z)— f (2), d). We now
estimate the value of S, ; (F,,). Let k and / be integers such that

min q;(z) < t, = k5 — < max g, (z)

zeD m ze D
and '
, o
min | grad [¢;(2)]| <1 = l~n; < max | grad [¢;(2)]] .
zeD ze D

To compute the function

1 N
f5(2) = —5 JJ f(u,v) dudv ,
(u v)eS(9,2)

where f(x, y) € F,,, S (0, z) < D to within g, it is sufficient by Lemma 5.2.3
to give the values of

tk+tl§

v, (L, 1) = J f(z)\/éz (7“‘) dt

tj, — t]o

to within « = 7e / (2 NCg (y)) and to assume that é is small enough so
that

2NC,(y) mw(6)
>

T

= A(y, N) mow (9) .

Since [ v, (t, 1)) | < C, m, to write the numbers v, (¢, 1) (i, k, [ fixed)
log, (C; m/x) binary digits are sufficient. Since
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1

, ; 1 T oomdt \ |«
lvi (tee 1> 1) — Vi (B 1) | < Cg -\7-’) 0— = ¢o(y)a
=1

8 1 —12/ m

(here we again use the mean value theorem), to store the numbers
v (tes1, 1) — vi (4, 1)) to within «, log, Co binary digits are sufficient.
Therefore to write the numbers v; (#,, t;) (i, / fixed; k any admissible number)

Cio () [loggm - (bi-—ai) ;] = #;, binary digits are sufficient. Con-
o o

sequently the total number of digits sufficient to store all the numbers
v, (f,, t7) to within «, that is, to store the functions /5 (z) to within ¢, is

m m11m  B(y,N,D) /m\?
H o=y Hiy <Ncio©®) |log, — + (bi—a) “—<W—<— :
T o ol y o 0 g

This proves the theorem.

§ 3. Functional “dimension” of the space of linear superpositions

Suppose that continuous functions p; (x, y) and continuously differenti-
able functions ¢q; (x, y) (i=1, 2, ..., N) are fixed. Let G be a closed region
of the x, y plane. We denote by F = F(G, { p;}, { g, }) the set of super-

N

positions of the form f(x,») = Y p;(x,»)f;(q:(x,y)), where (x,y)e G
i=1

and {f;(z)} are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

THEOREM 5.3.1. In every region D of the X,y plane there exists a
closed subregion G < D such that

r(F(G {p},{a:}) <1

Proof. By Theorem 4.5.1, in D there exists a closed subregion G* < D
such that the set of superpositions F(G*, { p;}, {¢;}) is closed (in the
uniform metric) in C (G¥*), and the functions { ¢; (x, ) } satisfy the condi-
tion: for any i, either grad [g; (x, ¥)] # 0 on G* or ¢q;(x, y) = const on G*.
We show that r(F(G* {p;}, {q; 1)) <1. By Banach’s open mapping
theorem, there exists a constant K such that for any superposition

N
2 P filgi(x, ) = f(x,»)e F(G*, {p;},{q;}) there are con-

i=]
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