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Corollary 5.1.3. For any continuous functions pt and continuously
differentiable functions qi h q2J, qkti, k < n (i 1, 2, N) and every
region Gn there exists a continuous function that is not equal in Gn to any
superposition of the form (V).

§ 2. (e, 8)~entropy of the set of linear superpositions

We denote by S (S, z) the disc of radius ô with centre at z. Let p (z)

p (x, y) and q{z) q (x, y) be functions defined in a closed region G

of the x, y-plane and having the properties :

dq (x, y) dq (x, y)
a) p (x, y), are continuous in G and have modulus

ôx dy
of continuity co (5),

b) the inequalities 0 < y < I grad [q (r)] I < - and I

p (z) I < -, where
• - —

y y

y is some constant, are satisfied everywhere in G.

Lemma 5.2.1. Let S (ô, z) a G and let (t) be the function equal to

2 V §2 ~(t-ii2))21 srad [q(z)] I-2 °n

q(z)- <5 I grad [q (z)] | < t < q(z) + grad [q (z)] |

and equal to zero elsewhere. Then

oo

J \nq(t) - h(e (q,t)nS(<5,z)) | dt < ct (7) co (5) 52
— 00

where c1 (y) is a constant depending only on y.

Proof Let [a, b] a e (q, t) n S (<5, z) be the segment of the level curve
e(q, t), endpoints a and b, lying on the boundary of S (<5, z); [z, a] and [z, b]

the vectors with origin at z and endpoints at a and b, respectively ;

«1 y([z, a], grad [q (z)]), a2 y([z,b], grad [q(z)]).

We have

dq
t - q(z) I \qI ds

se [z,a]

<5 cos oq I grad [g (z)] | (1 +0(l)co(<5))
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Hence

ösin aL ^j'b2~ (t -q(z)+ 0 (7) | grad [ (z)] |
"

and similarly

ô sin a2 ^ô2 - (t - q (z) + 0 (y) ôœ (c>))2 | grad [q (z)] |
2

By b) the size of the angle swept out by the tangent vector to the level curve
e (q, t) on moving along [a, b] does not exceed C2 (y) œ (ö). Therefore

^(sinoq +sina2)(l + 0(y)co(<5))

- 2 sj&~0- q(z)+ 0 (y) ôœ(<5))2 I grad (z)] | "2 + 0 (y) (<5).

If a1 > C3 (y) œ ((5) (C3 is a sufficiently large constant), then [<a, b] e (q, t)
n 5 (<5, z). Consequently, for

[ t *- q (z) I < 9 — S cos [C3 co (<5)] | grad [g (z)] | x (1 +0 (1) co (5))

we have hl (e (q, t) n S (ô, z)) hl {[a, £]). Since for every t (by b))

h\ (e{q,t)nS (S, z)) < C4 (y)(l + a> (S))
we have

oo

J I ft i (e (<jf, r)n S(3,z))- \

— 00

q (z) 4*®

J I ^1 OK*?, 0 (<5, z)) - /i9(0 I àt + 0 (y) ô2œ(b)
q(z) -0

We now estimate

q (z) -j- 0

J \hi(e(q,t)nS(3, z)) - fi(t)\dt
8(z) - e

Q (z) + 0
J I ft| ([ß, ft]) — HqI <

(z) - 0
q (z) + 0

<2 J (v/<52-(f-3(O+0(r)dco(5))2| grad [g(z)l|-2
q(z) - 0

- -Jb2 - t-q(z))2I grad [q (z)] \~2)dt + 0 (y) ô2a> (S)

0(y)ô2œ(ô) J + 0(y)«52m(d).

Here we have the mean value theorem. This proves the lemma.
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Lemma 5.2.2. Let p (z), q (z) satisfy conditions a) and b) ; S (ô, z)
cz G; let f ft) be an arbitrary continuous function, uniformly bounded in
modulus by the constant m. Then

j j p (u, v)f (q (u, vf) dudv
O, v) e S (ö, z)

oo

p(z)Igrad [g(z)][_1 f f(t
— oo

where | 1 (z) j < c5 (y).

Proof Using a) and b) and Lemma 5.2.1 we have

J p(u,v)f(q(u,vy) dudv
S(ö,z)

— p{z) j J /(q (u, v)) dudv + 0(1) mÔ2œ(Ô)
(u, v) 6S (ô, z)

— p(z) J {/(0 J I grad [#(s)] \~2ds) dt + 0(1) mô2co(ô)
-co see (q, t) nS (ô, z)

GO

p(z)\ grad [q(z)]|_1 j {f(t) j ds} dt + 0(y)
— go see (q, t) r\S (ô, z)

CO

p(z) \ grad [g(z)]|~2 J f(t)h1(e(q,t)nS (ô, z)) dt +0 (y)mô2œ (ô)
— co

p{z)I grad [<7(z)]|_1 ] f (t) pq{t) dt+ 0 (y) m<52co ((5).
— oo

This proves the lemma.

Lemma 5.2.3. Suppose that a number a > 0 and functions p (z),

q{z),f{t) satisfying the conditions of Lemma 5.2.2. are given. Iffor every
integer k such that

a
min q (z) < tk =kô — < max q (z)
zeG 171 zeG

and any integer I such that

ce

min grad [q (z)] | < tt I — < max | grad [q (z)] |

zeG

the inequality

m zeG

*k+*i*5

1 mjs2
tk-tf

t —U
dt aid2
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is satisfied, then for every disc 5" (<5, z) <= G

I J j p(u,v)f(q(u,v))dudv\^c6(y)(aô2 +
(», v) eS (<5, z)

Proof. Suppose that a disc 5 (5, z) a G is given. By the condition of the

lemma there are integers k and / such that | q (z) — /y | < 5ajm and

I I grad [q (z)] | - t{ | < ajm. From Lemma 5.2.2 we obtain

I P (z) I

I j p {u, v) f(q (u, t;)) cludv I <
(u, ü) eS (5, z)

I grad [g (z)] I - »
I I f(t)ftq(t)dt\

q (2) +
+ <5 jgrad lq (z)] |

2
-f c5 (y) mô co (5) < -r

y
m Ô2 -

i —

(t-q(z))2

q (2)

\ grad [q(z)]j2

ô J grad [q (z) ] |

*/c + 11 à

J

tk -tf
fit) I 82- dt

(by the mean value theorem)

2 2
< — ad2 + c5 (y) mô2co (ô) H—gr r

+ — ocô2 + c5 (y) m<52û) (5)
y2

ômdx \ a
Ö —

V 1 - r
ô2mdz \ oc

Jl—T2) m
c6(y)(aô2 + mô2œ (Ô))

This proves the lemma.
We denote by Fm Fm(D; pu p2, pN\qu q2, qN) the set of

superpositions of the form

N

f(x,y)Z Pi(x,y)fi(qi(.x,y)),where

and { qt (x, y) } are fixed functions, defined in the closed region D of the

x, y plane and satisfying conditions a) and b) with a constant y not depending
on i and {f (t) } are arbitrary continuous functions, defined on { [ab bt] }

{ [ min qt(z); max qt (z)\ } and uniformly bounded in modulus by
z e D z e D

the constant m.



Theorem 5.2.1. There exist constants A and B such that if s > Amco(b)

then for the (2, ô)-entropy of the set of functions Fm, Hs ô(Fm)

where A and B depend only on y, N and D.

Proof We put

B m\

ô\sj >

R(f(z),S) max
S (ô,z)czD

1

TIÔ2 f (il, v) dudv

(u, v) e S (ô,z)

We denote by (Fm) the 2-entropy of the space Fm, taking as the distance
between the functions f1 (z), f2 (z) e Fm the number R (/ (z) — f2 (z), 5).
The inequality H2e ö (Fm) < et3 (Fm) holds owing to the fact that if two
functions fx (z) and f2 (z) are (e, ^-distinguishable, then they are 8-dis-

tinguishable also in the sense of the metric R f (z) — f2 (z), We now
estimate the value of Tife ô (Fm). Let k and / be integers such that

min qt (z) < tk kb — < max qt (z)
zeD

and

min I grad \_qt (z)] | < tt I — < max | grad \_qt (z)]
Z 6 D

To compute the function

fö(z) '~

1

Tib2
f(u,v) dudv

(u, v) e S (c>,z

where /(x, y) e Fm, S (ô, z) a D to within s, it is sufficient by Lemma 5.2.3

to give the values of

tk + tn5

v,- (tk,
Tib2 MO J s

t - dt

tk - nö

to within a 712/(2 NCB (7)) and to assume that <5 is small enough so

that
2NCB(y)mœ(b)

2 > A (y, N) ma) (b)

Since | vt (tk, t{) | < Cx m, to write the numbers vf (tk, t[) (/, k, I fixed)
log2 (C1 mIa) binary digits are sufficient. Since
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\Vi(tk + i,t'l) ~ v,(tk> <
bmdx

\f 1 —r
c9 (y) cc

(here we again use the mean value theorem), to store the numbers

Vi(f*+uh) ~ to within a, log2 C9 binary digits are sufficient.

Therefore to write the numbers vf (tk, t\) (z, / fixed; k any admissible number)

Cio
m m

log2— + (bi-ai) —
a doc

M'u binary digits are sufficient.

Consequently the total number of digits sufficient to store all the numbers

V; (tk,t\) to within a, that is, to store the functions (z) to within e, is

h I

This proves the theorem.

m m
log2 — + (bi-a,) —

OC OOC

1 m B (y, N, D) fm\
— <

y a T

§ 3. Functional "dimension" of the space of linear superpositions

Suppose that continuous functions pt (x, y) and continuously differenti-
able functions qt (x, y) (/= 1, 2, TV) are fixed. Let G be a closed region
of the x, y plane. We denote by F F (G, { pt }, { qt }) the set of super-

N

positions of the form f{x, y)Y, Pi (x> y)fi {li (*> >0)> where (x, y)eG
i— 1

and {fi {t) } are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

Theorem 5.3.1. In every region D of the x, y plane there exists a

closed subregion G a D such that

r(F(G,{ Pi },{qi}))1

Proof By Theorem 4.5.1, in D there exists a closed subregion G* cz D
such that the set of superpositions F{G*, {pt}, { qt}) is closed (in the
uniform metric) in C ((/*), and the functions { qt (x, y) } satisfy the condition:

for any z, either grad [qt (x, y)] ^ 0 on G* or q{ (x, y) const on G*.
We show that r (.F (G*, { pt }, { qt })) < 1. By Banach's open mapping
theorem, there exists a constant K such that for any superposition

N

Z Pi(Xy)fi (li (x,y))/(x, y) e F *, {pt }, { qt}) there are con-
i - 1
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