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(here we again use the mean value theorem), to store the numbers

Vi(f*+uh) ~ to within a, log2 C9 binary digits are sufficient.

Therefore to write the numbers vf (tk, t\) (z, / fixed; k any admissible number)
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M'u binary digits are sufficient.

Consequently the total number of digits sufficient to store all the numbers

V; (tk,t\) to within a, that is, to store the functions (z) to within e, is

h I

This proves the theorem.
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§ 3. Functional "dimension" of the space of linear superpositions

Suppose that continuous functions pt (x, y) and continuously differenti-
able functions qt (x, y) (/= 1, 2, TV) are fixed. Let G be a closed region
of the x, y plane. We denote by F F (G, { pt }, { qt }) the set of super-

N

positions of the form f{x, y)Y, Pi (x> y)fi {li (*> >0)> where (x, y)eG
i— 1

and {fi {t) } are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

Theorem 5.3.1. In every region D of the x, y plane there exists a

closed subregion G a D such that

r(F(G,{ Pi },{qi}))1

Proof By Theorem 4.5.1, in D there exists a closed subregion G* cz D
such that the set of superpositions F{G*, {pt}, { qt}) is closed (in the
uniform metric) in C ((/*), and the functions { qt (x, y) } satisfy the condition:

for any z, either grad [qt (x, y)] ^ 0 on G* or q{ (x, y) const on G*.
We show that r (.F (G*, { pt }, { qt })) < 1. By Banach's open mapping
theorem, there exists a constant K such that for any superposition

N

Z Pi(Xy)fi (li (x,y))/(x, y) e F *, {pt }, { qt}) there are con-
i - 1
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tinuous functions {/* (t)}, defined on the sets {#;(£*)} and satisfying
the conditions

N

8) f(x,y)y Pi (x,y)f*(qt(x,y))forall (x,y)eG*;
1

9) max max |/*(t)|>K max \f(x,y)\.
i t<=qi(G*) (x,y)<=G*

Denote by FÀe F)e ((?!î, {Pi}, { qt}) the set of superpositions f(x,y)
e F(G*, {Pi},{ qt }) such that max | f(x, y) | < Is. By Theorem 5.2.1

(x,y)eG*
and (8), (9), there exist constants A and B such that if œ ((5) <(/L47£)~ 1

then HE Ô(F;e) < B (kKfjd. Hence the functional dimension

I 1 B(AK)2

r(Ft(G*, { Pt},{ })) < lim lim lim °g2 '3— 1

;.->x 0^0 e^o log2d

This proves the theorem.
From Theorem 5.3.1 and the properties of functional dimension (§ 1)

we have the following result, which is a stronger form of Theorem 4.6.1.

Corollary 5.3.1. For any continuous functions {Pi(x9y)} and

continuously differentiable functions { qt(x, y)} and every region D the

set of linear superpositions F (D, {pt}, { qt }) is nowhere dense in any space

offunctions that has in every region G a D functional "dimension" greater
than 1.

Remark 5.3.1. All the results about linear superpositions of the form
N

Y Pi (x' y) ft (Pi (-T y)) remain valid if we assume that {ft (t) } are arbitrary
i 1

bounded measurable functions.

§ 4. Variation of superpositions of smooth functions

Let Gn be a closed region of the space of the variables xl9 x2, xn
(n >2). A function F(x) F(xu x2, xn) is called a superposition of
order s generated by the functions of k (k > 1) variables

fß\,ß2--
• ißa hi) S, ßi 1 2, k)

if it is defined in G by relations


	§3. Functional "dimension" of the space of linear superpositions

