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(here we again use the mean value theorem), to store the numbers
v (tes1, 1) — vi (4, 1)) to within «, log, Co binary digits are sufficient.
Therefore to write the numbers v; (#,, t;) (i, / fixed; k any admissible number)

Cio () [loggm - (bi-—ai) ;] = #;, binary digits are sufficient. Con-
o o

sequently the total number of digits sufficient to store all the numbers
v, (f,, t7) to within «, that is, to store the functions /5 (z) to within ¢, is

m m11m  B(y,N,D) /m\?
H o=y Hiy <Ncio©®) |log, — + (bi—a) “—<W—<— :
T o ol y o 0 g

This proves the theorem.

§ 3. Functional “dimension” of the space of linear superpositions

Suppose that continuous functions p; (x, y) and continuously differenti-
able functions ¢q; (x, y) (i=1, 2, ..., N) are fixed. Let G be a closed region
of the x, y plane. We denote by F = F(G, { p;}, { g, }) the set of super-

N

positions of the form f(x,») = Y p;(x,»)f;(q:(x,y)), where (x,y)e G
i=1

and {f;(z)} are arbitrary continuous functions of one variable. We are

interested in the functional dimension of the set F.

THEOREM 5.3.1. In every region D of the X,y plane there exists a
closed subregion G < D such that

r(F(G {p},{a:}) <1

Proof. By Theorem 4.5.1, in D there exists a closed subregion G* < D
such that the set of superpositions F(G*, { p;}, {¢;}) is closed (in the
uniform metric) in C (G¥*), and the functions { ¢; (x, ) } satisfy the condi-
tion: for any i, either grad [g; (x, ¥)] # 0 on G* or ¢q;(x, y) = const on G*.
We show that r(F(G* {p;}, {q; 1)) <1. By Banach’s open mapping
theorem, there exists a constant K such that for any superposition

N
2 P filgi(x, ) = f(x,»)e F(G*, {p;},{q;}) there are con-

i=]
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tinuous functions { /7 (¢) }, defined on the sets {¢; (G*)} and satisfying
the conditions

N
8) fG,9) = Y pi(x,0)f7 (a.(x,) for all (x,y)eG*;
=1
9) max max |f}()|>K max |f(x,))].
i teq; (G*) (x,y)eG*

Denote by F,, = F,,(G*,{p;},{4g,}) the set of superpositions f(x,y)
e F(G*, {p;},{4q;)) such that max |f(x,y)| < Je. By Theorem 5.2.1
(x,y) e G*

and (8), (9), there exist constants 4 and B such that if w (§) <(AAK)™*
then H,,; (F,,) < B(LK)?/5. Hence the functional dimension

1 K)2
og, log, 240?

r(F(G*, {p;},{q;}) <lim lim lim =1

Ao 020 -0 log,o

This proves the theorem.
From Theorem 5.3.1 and the properties of functional dimension (§ 1)
we have the following result, which is a stronger form of Theorem 4.6.1.

CorOLLARY 5.3.1. For any continuous functions {p;(x,y)} and
continuously differentiable functions { q;(x,y)} and every region D the
set of linear superpositions F (D, { p;},{ q;}) is nowhere dense in any space
of functions that has in every region G < D functional “dimension” greater
than 1.

Remark 5.3.1. All the results about linear superpositions of the form
N
> pi (%, ) fi (g; (x, »)) remain valid if we assume that { f; (¢) } are arbitrary
i=1

bounded measurable functions.

§ 4. Variation of superpositions of smooth functions

Let G, be a closed region of the space of the variables x,, x,, ..., X,
(n > 2). A function F(x) = F (x4, X5, ..., X,) 1s called a superposition of
order s generated by the functions of k& (k > 1) variables

Fovope (s oy s 1) (@=0,1,2, 0y 53 B =1,2, .., k)

if it is defined in G' by relations
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