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symétrique ». Degré par degré, on prolonge ces foncteurs a la catégorie des
K-modules simpliciaux. Si M est un K-module simplicial, alors ’homologie
H [SM] a une structure naturelle d’algébre de Hopf a puissances divisées
et par conséquent sa série de Poincaré a la forme suivante

Thix! = (1+x) " (1—=x*)""2....

Les nombres de Betti b; sont les dimensions des espaces vectoriels H; [SM]
et les nombres positifs ou nuls e; peuvent étre calculés explicitement, soit
par voie topologique selon la méthode de Dold-Thom, soit par voie algé-
brique selon la méthode de M.-A. Nicollerat. Les nombres ¢; se calculent
a l'aide des nombres m; qui sont les dimensions des espaces vectoriels
H,; [M]. Le résultat partiel suivant est suffisant ici: d’une part e; est égal a
m; pour i < 2p et d’autre part e ,,,, est égal a la somme m,,,; + ms;.

Comme la K-algébre augmentée R est libre en chaque degré, il existe
pour tout r un isomorphisme de K-modules simpliciaux de S" (//I?) sur
I"/I"*1. Par conséquent I’homologie du K-module simplicial 7/I? (formée
des espaces vectoriels H,; (A4, K, K) connus par leurs dimensions ¢;) déter-
mine complétement I’homologie des K-modules simpliciaux I"/I"*'. Par
ailleurs ’homologie du K-module simplicial /° = R (formée des espaces
vectoriels Torj-‘(K, K) connus par leurs dimensions f§; données par les
déviations g;) peut étre filtrée par les images de 'homologie des K-modules
simpliciaux /". 11 reste donc a faire le passage de I’homologie du K-module
simplicial I"/I"*! & ’homologie du K-module simplicial /". La situation se
présente de maniére correcte (on a en fait une suite spectrale du premier
quadrant) grace au théoréme de convergence de D. Quillen. On a H,, [/"]
nul pour toute paire m < n, comme le démontre un argument de nature
purement simpliciale.

LES 2P PREMIERES DEVIATIONS

Grace au théoréme d’Eilenberg-Zilber et grace au foncteur F", noyau
de la transformation naturelle du foncteur ®" sur le foncteur S*, on peut
démontrer le résultat utile suivant. Si un épimorphisme A entre des K-
modules simpliciaux connexes donne des épimorphismes H, [}] pour
k = 0,...,n, alors il donne des épimorphismes H, [S"A] pour k = 0,..., n+1
et pour r quelconque, sauf peut-étre pour k = n+1 et r = 1, bien entendu.

On peut appliquer ce résultat a I’homomorphisme canonique de I sur
/1%,
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On va utiliser ’homomorphisme canonique de A, [/] dans H, [I/1%],
autrement dit de Tor 4 (K, K) dans H, (4, K, K), pour n différent de 0.
Les produits non-triviaux de H [/] proviennent de I'image de ’homomor-
phisme de H [I] ® H [I] dans H [I], qui passe au travers de H [I?] et les
puissances divisées de H [I] proviennent de ’image de ’application partiel-
lement définie de H [/] dans H [I], qui passe au travers de H [I”] donc de
H [I?%]. Cela étant remarqué, on peut donc définir un homomorphisme cano-
nique et utile

n,: T, (A, K, K) - H, (A, K, K)

avec I'isomorphisme de définition
T,(4, K, K) = Tor 4 (K, K)[J,

ou J, est le sous-espace vectoriel engendré par tous les produits non-triviaux
de degré n et par toutes les puissances divisées de degré n. Comme ici le
degré n est au plus égal a 2p+ 1, les puissances divisdes interviennent dans
le seul degré 2p. Par la théorie des algebres de Hopf a puissances divisées,
il est clair que I’espace vectoriel 7, (4, K, K) a la dimension g,. Par suite on
a une inégalité o, <C ¢, si n,, est un épimorphisme et une égalité 0, = ¢, si 7,
est un isomorphisme. Appelons 2, le conoyau de I’homomorphisme 7,
et w, la dimension de ..

Considérons la condition C, suivante: d’une part 5, est un isomorphisme
pour k < n—1 et d’autre part 5, est un épimorphisme. On a donc des homo-
morphismes surjectifs de H, [S"(I)] sur H, [S"(I/I?)]. Comme ils passent au
travers de H, [I"], on obtient des homomorphismes surjectifs de H, [/"] sur
H, [I'/I"" '] pour k < n+1 et pour r > 0, sauf peut-&tre pour k = n+1 et
pour r = 1. Il en découle une suite exacte pour r # 1

0—H,[I"'] - H,[I"] > H,[I"I"""] -0

et pour r = | il faut remplacer le 0 de gauche par 0 — Q, ., pour obtenir
encore une suite exacte. Grace au théoréme de convergence, on peut sommer
sur 7 et obtenir un isomorphisme non-canonique

Hn [S(I/Iz)] & Hn [R] + Qn+1 >

La dimension du H, de droite est donnée par le coefficient de x" dans la
série

(14+x)5 (1 =x2)7%2 . (1 +( =1 ixn-nntten
et la dimension du H, de gauche est donnée par le coefficient de x" dans la
série
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(1 +x)1 (1 —xH72 (L +(= 1);”‘1 x”)(‘””” on

cette fois seulement si z est au plus 2p. Mais comme 0, et g, sont €gaux pour
k < n, il reste une égalité simple J, = ¢,+ w,,,. Comme par ailleurs on
a une inégalité ¢, >> 6, due a la surjectivité de 1, cela ne se peut que sous la
forme 8, = ¢, (et i, est un isomorphisme) et w,,; = 0 (et 77,4 est un épi-
morphisme). On peut donc démontrer la condition C, par induction sur
n < 2p+1 et les nombres 6, et ¢, sont égaux pour n < 2p (ou quelconque en
caractéristique nulle).

LA 2p+ |-EME DEVIATION

Nous venons de le constater, ’homomorphisme 7, est une surjection.
Par conséquent on a une premiére inégalité, a savoir &,,,.; = 0;,11. Ce
qui a été fait ci-dessus pour n < 2p peut étre répété en partie pourn = 2p+1.
Mais alors la dimension du n-éme module d’homologie de S (//1%) est donné
par le coefficient de x*?*! dans la série modifiée suivante

(1 _l__x)él (1 ___x2p)_52p (1 +x2rt 1)52p+1+53 '
Cela conduit finalement a I’égalité simple

Ogp+1 + 03 = Ep41 + Wapys

Il en découle bien I’inégalité annoncée
O2pt1 = Eapt1 = O2p41 + 03

En particulier les homomorphismes #,,. 4 €t 1,4, sont tous deux des iso-
morphismes dans le seul cas dégénéré ol I'invariant d; est nul. Il s’agit du
cas ou ’anneau local 4, complété si nécessaire, est un anneau d’intersection
compléte, ce qui entraine par ailleurs la nullité des déviations ¢; et des inva-
riants &, pour i > 3. Il n’est pas exclu que 'on ait pourtant des égalités
Osp+1 = E2p+1 € 05,00 = &5,4,, sans isomorphisme, dans des cas non
dégénérés.

De maniére générale, considérons une K-algébre simpliciale augmentée R
d’idéal d’augmentation connexe /. On dénote par J le sous-espace produit
H [I]. H [I]de H [I], les puissances divisées n’intervenant pas car nous allons
considérer des degrés impairs. Soit K une autre copie de K, opérant sur
H [I] grace a 'homomorphisme identité et opérant sur K grace a ’homo-

morphisme de Frobenius. On peut alors construire un homomorphisme
utile n
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