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Introduction

The most direct approach to the construction of moduli spaces of
algebraic varieties is via the theory of invariants : one describes the varieties

by some sort of numerical projective data, canonically up to the action of
some algebraic group, and then seeks to make these numbers canonical by

; applying invariant polynomials to the data, or equivalently by forming a

quotient of the data by the group action. The main difficulty in this approach
is to prove that "enough invariants exist": their values on the projective

j data must distinguish non-isomorphic varieties.

I
Take as an example the moduli space Jtg of curves of genus g ^ 2 over

j some algebraically closed field k. Given C, such a curve, we obtain by
j choosing a basis B of jT (C, (£2*)0'), an embedding <P: C pU'-Ute-n-1

b Lectures given at the "Institut des Hautes Etudes Scientifiques", Bures-sur-
Yvette (France), March-April 1976, under the sponsorship of the International Mathematical

Union. Notes by Ian Morrison,
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PN. Let F be the Chow form of F (C) (cf. 1.16). Changing the basis B
subjects # (C) to a projective transformation and F to the corresponding
contragradient transformation. So if we could find "enough" polynomials Ix
in the coefficients of F which are invariant under this action of SL(N+ 1)

then the image of the map given by C Ix (F), would be Mr
As of two years ago, this process could be carried out only when char k

0 and C was smooth ; and moduli spaces in characteristic p had to be

constructed via the much more explicit theory of moduli of abelian varieties
(cf. [14] and [15]). Since then, however, two very nice things have been

proven:

a) W. Haboush [10] by making a systematic use of Steinberg representations
has shown that all reductive groups are geometrically reductive (cf. Remark
1.2. vi). This was independently shown for SL (n), by Processi and Formanek
[25], using the idea that the group ring of an infinite permutation group has

"radical" zero : i.e. for each x g R, x A 0, there exists y e R such that xy
is not nilpotent. For a complete treatment of the new situation in characteristic

p moduli problems see Seshadri [20].

b) D. Gieseker [9] using the concept of asymptotic stability (cf. 1.17) has

established the numerical criterion for stability (cs of 1.1) for surfaces of
general type. Inspired by Gieseker's ideas, the author has extended this
method to the "stable" curves of Deligne and Mumford [6]. (These are

curves C with dim H1 (C, 0C) g, ordinary double points but no worse
singularities and no smooth rational components meeting the remainder
of the curve in fewer than three points ; they are important because the most
natural compactification Jtg of Jig is the moduli space for stable curves of
genus g.) The power of the ideas of Gieseker is by no means exhausted. It
looks like nice results may be possible for other surfaces, perhaps even for
singular surfaces and the technique suggests several nice problems: in
particular, it may lead to a proof of the surjectivity of the period map for K3
surfaces. The new ideas and results of these lectures are largely inspired by
Gieseker's results (cf. especially corollary 3.2 below).

My goal is to outline this method and its applications, especially to the

completed moduli spaces of curves Jtg> indicating open problems. The
field is moving ahead rapidly and may be greatly simplified in the near future.

We will work in general over an arbitrary ground field k.



— 41 —

§ 1. Stable points of representation, examples and Chow forms

For more details on the notations, definitions and properties which
follow see Mumford [14], which we will call G.I.T. or Seshadri [20].

Fix k an algebraically closed field,

G a reductive algebraic group over k (i.e. G

[semi-simple group x Gjjj/finite central subgroup),

V an «-dimensional representation of G,

xeV.

There are three possibilities for x whose equivalent formulations are summarized

in table 1.1 below.

1.1.

x unstable x semi-stable x stable

("«> hfvx) (os)
i) 0G (x) is closed

in V
ii) stab (x) is finite

OeO« O) 0 £ 0G (x)

(bu) y non-constant
G-invariant
homogeneous polynomials

/
fix) 0

(bss) 3 a non-constant
G-invariant
homogeneous polynomial

/ s.t.

fix) ^ 0

(bs) i) \/ y E v— 0G (x),
3 a G-invariant
polynomial /s.t.
fix) =£fiy)

ii) tr degkk (V)G
dimK-dimG

(O
3 a 1-PS X of G s.t.
the weights of x
with respect to X

are all positive

(Css)

v 1-PS's X of G
the weights of x
with respect to X

are not all positive

(cs)
for all non-trivial
1-PS's X of G, x
has both positive and
negative weights with
respect to X
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1.2. Remarks, i) Recall that a 1-PS (one parameter subgroup) A of G

is just a homomorphism A : Gm -» G. Such A can always be diagonalized in a

suitable basis:

m

f1 0

0

If in this basis x (xl5 x„), the set of weights of x with respect to A

is the set of rt for which xt ^ 0.

ii) Unstable is not the opposite of stable, but of semi-stable. We will use

non-stable as the opposite of stable.

iii) The important part of stability is the condition: 0G (x) closed in V.

In virtually all the cases that will interest us the finiteness of stab (x) will
be automatic (but cf. the remark following 1.15).

iv) A point x is stable if it merely has negative weights with respect to

every non-trivial 1-PS A, for then it also has positive weights with respect
to A, namely, its negative weights with respect to A-1.

v) The proofs of cu=> au => bu and of bs=> as => cs are obvious : for
example, if A is a 1-PS for which all weights of x are positive, then A (t) x -» 0

at t - 0; i.e. cu => au.

vi) The proofs of as => bs and bu => au are achieved by reduction to the

special case called geometric reducivity of G. A group G is called geometrically

reductive if
a) whenever V0 is an invariant codimension-1 subspace of a vector space V

in which G is represented, there exists an n for which the codimension-1
invariant subspace V° • Symm"_1F c: Symm"F has an invariant
1-dimensional complement.
But notice that this is the same as saying that

b) whenever x ^ 0 is a (7-invariant point, then there exists a G-invariant
polynomial / such that f(x) ^ 0 and /(0) 0. (Just consider x as a

A.

functional on the dual V and apply a) to its kernel there).

And b) is a special case of as => bs. When char k — 0 we can take the
polynomial / to be linear, for by complete reducibility the invariant subspace

generated by x is invariantly complemented. A simple example shows this
does not happen in char p. Take p 2, G SL (2), V the space of
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symmetric bilinear functions on k2, and x a non-degenerate skew-symmetric

form (x e V because p — 2 Then x is SL (2)-invariant and there are no

(j-invariant non-zero linear functional on F A quadratic / which does

work is the determinant.

vii) The remaining implications cs => as and au => cu are essentially

consequences of the surjectivity of the natural map

P 1°GG} G {kL\ G mm (/<CM3)

where A is considered as a k ((/))-valued point of G by composition with
the canonical map

Spec k ((f)) -» Spec k \_t, t ~~x] Gm

1.3. Let Vss (resp. Vs) denote the Zariski-open cones of semi-stable (resp.

stable) points. V—Vss is the Zariski-closed cone of unstable points. The
conditions bof 1.1 tell us that if we try to map P (V) to a projective space
by invariant polynomials, we can only hope to achieve a well-defined map
on P (F)ss and an embedding on P (F)s. From the point of view of quotients
this can be expressed by:

Proposition 1.3. Let X Proj k [V]G. Then there is a diagram

P(F) dP(F)ssDP(F)S

i

such that i) if x, y eP(F)s, ns(x) ns (y) o 3 g e G s.t. x g y

ii) ifx,yeP(F)ss, n(x)n0)<*- 0°(x)n0G (y) nP(V)ss # 0

We now want to look at some examples to illustrate the application of
these ideas.

1.4. "Bad" actions. Using results of T. Kimura and M. Sato [11] '),
we can give a list of all representations of simple algebraic groups in charac-

b Plus help given by J. Tits.
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teristic 0 in which all vectors are unstable. The point is that there are very
few such representations.

G V

SL(W)
A

W\ Wl, 1 < k < dim W

| SL W) A2 W, A2 W

{ dim W odd A2 W ® W, A2 W ® W

sp m W

Spin (10) W or W © W where W is a
16-dimensional half-spin representation

1.5. Discriminant. If G is semi-simple and char k 0 then any
irreducible representation V has the form V f (G/B, L) for a suitable
line bundle L on G/B (B is a Borel subgroup of G). To a point x in V associate
the divisor Hx on G/B which is the zero set of the corresponding section.
Except in the extremely unusual case that the set of singular Hx is of co-
dimension > 1, there is an irreducible invariant polynomial <5, the
discriminant, such that

1) ô (x) 0 <=> Hx is singular

2) V — (<5 0) consists of semi-stable points.

An interesting case is

Lemma 1.6. Let G SL(n), V A1 (kn). If W c kn is a subspace of
codimension I then let <PW denote the natural map A2 W ® Al~2 (k")

A1 (kn). If 2 < I < n — 2 or n is even 1—2 or n — 2, then there is a
G-invariant ô such that ô (x) Ooxelm (<PW) for some W.

When 1 2 and n 2m + 1 we have seen that there are no invariants ;

corresponding to these cases the Grassmanian of lines in P2m in its Plücker
embedding in projective space has the unusual property that the singular
hyperplane sections are of codimension ^ 2 in the set of all such sections.

Question : if not every point of V is unstable, then is the set of singular
hyperplane sections Hx of codimension 1
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For 1 2 and n even or / 3, ft — 8, one can check that x is unstable

o S (x) 0, hence <5 generates the ring of invariants. It would be nice to

have a necessary and sufficient condition for a 3-form to be unstable for

higher n as well.

1.7. 0-Cycles. For G SX (IF), dim W 2,

Vn Symm"(IF)

vector space of homogeneous polynomials /
of degree n on W,

p (j/j Space of 0-cycles of n unordered points on

the projective line P (IF), the roots of an/
determining the cycle.

n

If / Yj aixn'iyiandXis the one-parameter subgroup given by
i 0

/ o \ n

t I J in these coordinates, then X (t)f £ attn ~ 21 xn 1 y\ For/
\0 t~x i=o

to be stable, the weights (n~2i) associated to the non-zero coefficients off
must lie on both sides of 0: i.e. ifj ^ n/2, neither xJ nor yJ divide/.

an an-x a± a0 coefficient

—• • • • o—-

— n—n+ 2 0 n— 2 n weight.

In fact, the stability of / is equivalent to the same condition with respect

to all linear forms /: lj // if j ^ n/2.

Thus P (Vn)s {0-cycles with no points of multiplicity ^ n/2}

P (Fw)ss {0-cycles with no points of multiplicity > n/2}

1.8. Remark. In the example above we can also prove that semi-

stability is a purely topological character. I claim that if n is odd and / is

unstable then the action of G near Je P (Vn) is bad: on all open
neighbourhoods of the orbit of /, G acts non-properly and the orbit space is non-
Haussdorf. Let's see this for n 1. Consider the following deformations
of a 7-point cycle.
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(Subscripts indicate multiplicities)

t 1 xxx x x x x

t s xxx X X X X xxxx

t— 0 x xxxx ^ XXX X

3-fold 4-fold

At each intermediate stage the two cycles are projectively equivalent, but the

unstable limiting cycle in the right is clearly not equivalent to the limit on
the left. In fact, any pair of cycles with the multiplicities indicated on the

line t 0 arise in this way as simultaneous limits of projectively equivalent
0-cycles. Moreover, there are cycles of the same type as the left hand limit
in any neighbourhood of the orbit of the right limit—just bring a multiplicity
one point in towards the triple point; so the orbit space cannot be Hausdorff
near the right limit.

1.9. Curves. Here G SL(W), dim W 3, Vn Symm" (W), as

before, and a point/efn defines a plane curve of degree n. There is a very
simple way to decide the stability of/. Represent/ as below by a triangle of
coefficients, T.
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We can coordinatize this triangle by 3 coordinates ix, iy, iz (the exponents

of x, y and z respectively) related by ix + iy + iz =* n. The condition that

a line L with equation aix + biy + ciz 0, (a, b, c) ^ (0, 0, 0), should

pass through the centre of this triangle is just a + Z? + c 0;ifL also

passes through a point with integral coordinates then a, b and c can be

chosen integral. It is now easy to check that the weights of the 1-PS

at /are just the values of the form defining L at the non-zero coefficients of/
In suitable coordinates every 1-PS is of this form so:

/ is unstable <^> in some coordinates, all non-zero coefficients of/lie to
one side of some L

f is stable o for all choices of coordinates and all L,/ has non-zero

(resp. semi-stable) coordinates on both sides of L (resp. / has non-zero

Roughly speaking, a stable / can only have certain restricted singularities.
We summarize what happens for small n, showing the "worst" triangle T
for / with given singularities, and the associated L when / is not stable.

1.10. n 2: We can achieve the diagram below for a non-singular
quadric /by choosing coordinates so that (1,0, 0) e/ and z 0 is the
tangent line there, so / is never stable. We cannot make the xz coefficient
of/zero without making/ singular so / is always semi-stable; indeed, we '
know / always has non-zero discriminant. A singular quadric always has a

diagram like that on the right: make (1, 0, 0) the double point. Henceforth,
we leave the checking of the diagrams to the reader.

coordinates on both sides of L or has non-zero
coefficients on L).

non-singular
quadric

singular
quadric

L
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1.11. n — 3: It is well known that in this case the ring of invariants is

generated by two invariants, A of degree 4 and B of degree 6. If we set
A — 27A3 + AB2, then up to a constant the classical /-invariant is just
A3/A. The possibilities are:

Singularities of / "Worst" triangle Stability
AND INVARIANTS

/ has triple point unstable
A B 0

j undefined

/ has a cusp or two
components tangent
at a point.

unstable

A B 0

j undefined

/ has ordinary double

points (this includes
the reducible cases:

/ is a conic and a

transversal line,/is a

triangle)

semi-stable and not
stable

L A 0 but A, B ^ 0

hence j oo

/ smooth stable
A / 0

j finite
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We remark that in this case, we have

Jt± A1

n n
^7 p2

and that the /invariant is a true modulus. Note that from a moduli point
of view all three semi-stable types are equivalent.

1.12. n 4: There are already quite a few diagram types here. Their
enumeration can be summarized by saying that / is unstable if and only
if /has a triple point or consists of a cubic and an inflectional tangent line;

/is stable if and only if/has only ordinary double points or ordinary cusps

(i.e. singularities with local equation y2 x3 + higher terms). The remaining

/'s with a tacnode (a double point with local equation y2 x4 +higher
terms) are strictly semi-stable.

1.13. Remark. The fact that for n Se 4 curves with sufficiently tame

cusps are semi-stable (or even stable!) is a definite problem because

i) such curves do not appear in the good compactification Mg of the
moduli space of non-singular curves of genus g. But

ii) if we wish to obtain a compactification of Jlg as the quotient space of
some subset of P (Vn) by G, the natural candidate is P (Vn)ss ; so these

curves must be let in.

For example, when n 4, we have

^ 3, non-hyperelliptic [P (V4) ~ (<5 0)]/
n n
Jti P (Vt)JG
n_ a n
^#3 2 P (V^sJG

ß

Mz is the moduli space for "stable" curves of genus 3: (see introduction).
Recall from Proposition 1.3 that P (F4)ss/G is just the projectivization of
the full rings of invariants of P (F4). The rational maps a and ß induced
by the top isomorphism enable us to make a topological comparison of
these two compactifications. Let's see geometrically how cuspidal curves in
P (Vdss prevent a and ß from being continuous.

First a: the diagram below shows on the left a deformation on Jl3 with
limit in ^3, and on the right the same deformation followed to its limit in
P (VJJG.

L'Enseignement mathém., t. XXIII, fasc. 1-2. 4
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m, in P(F4)ss /G

Ni

0\2) o

o A o o cusp
singularity

In the limit on the right, the value of the j-invariant of the shrinking elliptic
curve has been lost! So a blows up a point representing a curve C with a

cusp to the set of points representing joins of an arbitrary elliptic curve with

the desingularization C of C. a also blows up the point representing a double
conic to the family of all hyperelliptic curves.

As for ß, look at the double pinching below:

in, O

/

in P(F4)ss IG

\<y o or

tacnodal
singularity

X)
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Here it is the manner in which the tangent spaces of the two branches have

been glued at the tacnodal point which has been lost in the limiting curve

on the left: this glueing corresponds on the left to the relative rate at which
the two pinches are made. Thus ß has blown up the point corresponding
to the double join of two elliptic curves to a family of tacnodal quartics.

1.14. Surfaces. Here G SL (W), dim W 4 and Vn Syrnm" (W)
as before. The technique for determining stability here is essentially that
given for curves in 1.9 except that one has a tetrahedron T of coefficients
and 1-PS's determine central planes, L : and, of course, the computations
required to apply the technique are much more complicated (cf. the case

n 4 below). For small n, the situation is summarized below.

n Type of singularities Stability

n — 2 non-singular
singular

semi-stable, not stable
unstable

n — 3 non-singular or with ordinary double
points of type Al
ordinary double points of type A2

i
f stable

semi-stable, not stable

triple points, double curve, higher double
points } unstable

n — 4 singularities at most rational double
(due to points, or ordinary double curves poss-
Jayant Shah ibly with pinch points, but no double
[26]) line, and if reducible then no component

a plane, no multiple components

A triple point whose tangent cone has
only ordinary double points ; or a double
line not as below; or an irrational double
point not as below; or a plane plus a
cubic meeting in a plane cubic curve with
only ordinary double points; or a non-
singular quadric counted twice

a) quadruple point, or triple point whose
tangent cone has cusp,

b) x y 0 is double line and

/ g (.x2, xyz2, xy2, y3)

c) a higher double point of form :

/ g (x2, xy2, xyz2, xz3, y3z, y4)

stable

semi-stable
— but not stable

unstable
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1.15. Adjoint stability.

Proposition 1.15. Let G be any semi-simple group with Lie algebra g.
Then X e g is unstable o ad X is nilpotent.

Proof: (=>) From the formula ad (Ad g (x)) Ad g o ad x o Adg'1 it
is immediate that the characteristic polynomial det (tl— ad x) is (/-invariant,
hence that is coefficients are invariant functions. If x is unstable, these all
vanish so adx is nilpotent.
(<=) If adx is nilpotent then the { exp t (x) | t g k } is a unipotent subgroup
of G which must be contained in the unipotent radical Ru (B) of some Borel

subgroup B of G. Fix a maximal torus T c B, so B Ru. T. Then by the

structure theorem of semi-simple groups we can write Q t + ^ Q<x)

\a>0 J

+ X 9«\ where t Lie (T)and£ ga\ Lie (£)). Let xa be
\ a< 0 / \ a> 0 /

the character of T, which is associated to a (oq) (i.e. if wef, y e ga

then Ad (w) (y) (w) T)? an(i ^ / be a linear functional on the group of
characters of T defining the given ordering: i.e.,

I(Xa) E ci«i> 0 if a > 0 and I (xJ <0 if a < 0.
i

We can always choose / so that all the c{ are integers. If we define a 1-PS X : Gm

T by k{t) tCi, then the weights of X with respect to X are

some subset of { / (a) | a > 0 }, hence are positive. Thus X is unstable.

Remark. There are no stable points. One can show that the regular
semi-simple elements of g have closed orbits of maximal dimension but
their stabilizers will be their centralizers, i.e. maximal tori of (/, and hence

far from finite.

1.16. Chow form. The Chow form is the answer to the problem of
describing by an explicit set of numbers a general subvariety Vr c Pn.

In two cases, the problem has a very easy answer: a hypersurface has its

equation F and a linear space Lr has its Plücker coordinates. The Chow
form is just a clever combination of these two special cases. Suppose Vr
has degree d. There are two ways to proceed

i) If u (ui) e Prt write Hu for the hyperplance 0. One shows

that there is an irreducible polynomial <PV such that

[FnH^n ...n Hp * 0]o[<M*40), -, 0]



— 53 —

Moreover is multihomogeneous of degree d in each of the sets of
variables (uP, up), <PV is unique up to a scalar, and <PV determines V.

ii) If G Grassmanian ofLn~r~ vs in PM and <SG (1) is the ample line bundle

on G defined by its Plücker embedding, then the set of L e G such that

L n V 7^ 0 is the divisor Dv of zeroes of some section if (9G (d) and V

and Dv determine each other. (Unfortunately, Dv is almost always a

singular divisor.)

These methods give the same result via the identification:

Homogeneous
coordinate

ring of G

Subring W of C [..., Up, ...] generated

by the Plücker coordinates

PiQ,... ,ir ~ det(r+1(r+1) (Up), i0 < ii < < ir

Letting Wd be the dth graded piece of W, the identification furnishes an

irreducible representation
r + 1

Syrnnfi* (Cn + 1)

© r (G, (9
G (d))

d=o

Symmd (Ar+1 (Cn+1)) -» Wd
r + 1

0
Thus, although we will usually consider the Chow form as a point of the

SL (n+ 1) representation ®r+1 SymnT* (Cn+1) this form lies in the irreducible

piece Wd and can be thought of as defining a divisor on the Grassmanian.

For more details on Chow forms, see Samuel [17, Ch. 1 § 9].

1.17. Asymptotic stability. We will say that a variety V c P" is

Chow stable or simply stable if its Chow form is stable for the natural
SL (n + l)-action. If L is an ample line bundle on V, we say that (V, L)
is asymptotically stable if

3 n0 s.t. Vn ^ /?o, $r(Ln)(V) c= js stable.

Attention : a stable variety need not be asymptotically stable (nor, of course,
vice versa). Indeed, one of the main goals of this exposition is to show that
the asymptotically stable curves are exactly the "stable" curves of Deligne
and Mumford, and that by using asymptotic stability we can construct JÎg
as a "quotient" moduli space for these curves.
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§ 2. A CRITERION FOR X\ c P" TO BE STABLE

If/ (a) is an integer-valued function which is represented by a rational
polynomial of degree at most r in n for large n, we will denote by n.l.c. (/)
(the normalized leading coefficient of /) the integer e for which f(n)

nr
— e — + lower order terms. (What r is to be taken, will always be clear

r
from the context.)

Proposition 2.1 *). (The "Hilbert-Hilbert-Samuel" Polynomial).
Suppose X is a k-variety (not necessarily complete), L is an invertible sheaf
on X and J cz (9x is an ideal sheaf such that Z Supp (9X/^ is proper
over k. Then there is a polynomial P (n, m) of total degree ^ r, such that,

for large m

x(LnUmLn) P(n,m).

Proof We can compactify X and extend L to a line bundle on this

compactification, without altering the validity of the theorem so we may
as well assume X proper over k. Let n: B -» A be the blow-up of X along

J (i.e. B By (A) Proj ((9X © J © J>2 © and let E be the exceptional

divisor on B so that J 0B (9 (—E). The well-known theorems of
F.A.C. (Serre [18]) for the vanishing of higher cohomology in the relative
case imply that when m > 0:

0 7i* (0 - mE))

ii) R%((9(-mE)) (0), i > 0

Now examine the exact sequence:

0 > J>mLn > Ln LnjJ>mLn ^ 0

The Hilbert polynomial for x (fn) certainly satisfies the conditions on P.

Moreover, in view of i) and ii); we have for m > 0:

x(X,JmLn) x(B,7i*Ln(-mE)) x (B, (tt^L)®" ® (9 (-£)®m)

so, a theorem of Snapper [5, 21] guarantees that this last Euler characteristic
is also a polynomial of the required type for large m and n. By the additivity
of x we are done.

1) This result and its geometric interpretation are essentially due to C. P. Rama-
nujam [16].
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Definition 2.2. In the situation ofProposition 2.1, we denote by eL {J)
(the multiplicity of J measured via L) the integer n.l.c. (x (Lnl<fnLnf).

Examples, i) If J 0 and X is complete, P is the Hilbert polynomial
of L. ii) If Z is set-theoretically a point x then P is the Hilbert-Samuel

polynomial of J> as an ideal of (9X>X and e (</) is its multiplicity there: in

particular, it is independent of L. Note that, in general, eL («/) depends on
the formal completion of X along Z and the pull-backs of J>,L to this

formal completion.

2.3. Classical geometric interpretation. Let Xr a P'1 be a

projective variety, L (9X (1), and A be a subspace of r (Pn, (9 (1)). Define LA
to be the linear subspace of P" given by s =* 0, s e A. Define J> A to be the
ideal sheaf generated by the sections s e A, i.e. J> A L is the subsheaf of L
generated by those sections and Z Supp {(9xj^f) X n LA is the set

of their base points.
If pA: P" — La -» P (A) Pm is the canonical projection, and n is the

blow-up of X along JA then there is a unique map q making the following
diagram commute:

res
X - Z P

*
O O S v./

% *
X + B BJA

Moreover, because sections of (9pm (1) pull back to sections of/^.Lonl
and are blown-up to sections ofL twisted by minus the exceptional divisor E,

(2-4) g*(<V,(l)) (7i* L)(-E).
Define pA(X),the image of X by the projection pA, to be [cycle (q (B))~] :

that is, q B)with multiplicity equal to the degree of B over q if these
have the same dimension and 0 otherwise. I claim

Proposition 2.5. eL (XA) deg X-degpA

Proof. If H is the divisor class of a hyperplane section on X, then

deg X =(H 0 n.l.c. (Z (IPx(n)).
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By 2.4, q is defined by the linear system of divisors of the form n
1 (H) - F,

hence

deg Pa (x)(0_1 (H) -E)r)n.l.c

Finally, from its definition

eL(^A)n.l.c x(&x(n)l^"&x(n))
n.l.c. x("))- n.l.c. /(/"^(n))

degX-degpA(X)

This proof brings out the geometry even more clearly. If H1, Hr
are generic hyperplanes in Pr then

deg (X) # (X n H1 n n i/r), (# denoting cardinality)

As the /// specialize to hyperplanes /// of the form ^ 0, s g A (remaining
otherwise generic) the points in this intersection specialize to either:

i) points outside Z: these points correspond to points in the intersection of
Im (q) with r generic hyperplanes on P", and each of these is the specialization

of deg q of the original points i.e. deg pA (X) points specialize
in this way

ii) points in Z : eL {JA) measures the number of points which specialize
in this way.

For example, if X1 c P2 is a curve of degree d, y (0, 0, 1) is on X and
A kX0 + kXu then | Z | { y }, pA (x0, xl9 x2) (x0, and the

picture is:

pi



— 57 —

Thus pA (X) (dP1), where a is the degree of the covering/?; a generic line

meets X in d points and as this line specializes to a non-tangent line through

3; it meets X at y on mult y (X) eL (JA) points and meets X away from y in

d - eL (/A) a points.
The following technical facts will be useful in calculating the the

invariants eL {J>).

Proposition 2.6. a) If in the situation ofProposition 2.1) L and J> L

are generated by their sections then h° (LnIJ"Ln) - eL (J) - O (// x).

(Thus we can calculate eL (J) from the dimensions of spaces of sections.)

b) Suppose, in addition, we are given a diagram

X ^ X0 =/-1(0)

/
Spec (Ä) 3 0

where f isproper, and afinite dimensional vector space W c= T (X,JL) which

i) generates J L
^

ii) defines a closed immersion X — X0 P (W)

Then the dimensions of the kernel and cokernel of the map

(T (X, L")/^-submodule generated by the image of W®n -> T (.LnjJnLn)

are both O fif'1).

Proof. The idea in a) is to show that hl (Ln/Jn Ln) 0(nr~1),
i ^ 1. We first remark that is a compactification X of X over which L
extends to a line bundle L such that

i) L is generated by its sections

ii) some W c= T (X, L) which generates J L extends to a
W c T(X,L).

Indeed, on any compactification X, there exists a coherent sheaf such that
<F\ x L and has properties i) and ii), and the pullback of to the

blow-up B^l (X) is a line bundle with these properties: so we might as well
replace X by (X). Then if we take an ideal sheaf J such that ITgenerates
J L, ß J J' where is supported on X - X only, and it suffices
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to show ti (I"//"!") O (rf-1) i ^ 1 since Ln/jnLn ^ Ln/JnLn © Ln/J"\ Ln

so this bounds hl (Ln/jPnLn). To do this, it suffices, in turn, to bound

hfX, Ln) and h1 (X, Jn. Ln) ti (By (X), L(-E)®n) (where E is the

exceptional divisor on Bj(X)). These bounds follow from:

Lemma 2.7. If Xr is proper over k and L is a line bundle on X
generated by its sections, then hl (L®n) O (nr~1), i ^ 1.

Proof Let X0 be the image of X in Pn under the map given by the
sections of L. Then L n* (0Xq (1)) and

H'1 (Z, L®n). H{ (Z, ti* ((9Xq (n)))

S H°(X0, (R%ßxo)®(9Xo(n))
for n large.

The last isomorphism follows from first applying the Leray spectral sequence,
and then noting that all the terms involving higher cohomology groups
vanish for large n, by the ampleness of ®Xo (1). But if p e Supp Rln^OXQ

for i 1, the fibre 7t-1 (p) has positive dimension, hence dim Supp Rln:{i(9Xo

^ r — 1 which gives the desired O ff'1) bound on the dimension of the

last space.
A suitable compactification and an argument like that in the proof of a),

reduce the part of the statement of b) about the cokernel to bounding an
h1 {Jn. Ln) and this is accompanied as in a) by a blow-up and the lemma.

The procedure for dealing with the kernel is somewhat different: What we

want to control is the dimension

(H° {JnLn)jA-submodule generated by the image of W®n)

That is to say, for n > 0, the dimension of :

(H° (B (Z), %*Ln (-n£))/^-submodule generated by image of W®n)

Let B Bjp (Z) and q be the proper, birational map B 1+Bf a P" x Spec A

induced by W. Then q* (1)) 7r*L (-E) and for large ft, we have

H° (B, Ln (-nE)) g H° {B\ q* (0B) ® 0B. (nj)

j
^4-submodule

generated by
the image of W®n

U

H° (B', &B. («))
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The cokernel of the inclusion on the right is just H° (B', (0B)/0B' (/?)).

But the support of this last sheaf is proper over 0 e Spec A, hence of dimension

less than r, so a final application of the lemma completes the

proof.

2.8. Fix : Xr c P" a projective variety,

X0, Xn coordinates on P",

<PX the Chow form of X,

>o 0

k(t) t k
Po — Pi ^ pn fe 0

0 tpn

k chosen so that this is a 1-PS of SL (jt + 1), i.e. k - YjPiln+ 1-

We define an ideal sheaf J cz (PxxAi by

^ - [®x (1) ® ^ai] subsheaf generated by { tPiXt } i 0, n

Remarks, i) From an examination of the generators of J, one sees

that the support of the subscheme Z (9XxKi\J> is concentrated over
0 g A1; if we normalize the p-L so that pn — 0 then the support of J also
lies over the section Xn 0 in X.

ii) Consider the weighted flag:

(Xi ..r~Xn=0) cz (X2 =ZB 0) cz (Xn 0)

L0

weight po weight p1 weight pn_1

The subscheme Z looks roughly like a union of ptth-order normal
neighborhoods of Lt n X. It is easily seen to depend only on the weighted flag
and not on the splitting defined by k.
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A1

iii) Roughly speaking, e&Al 0ox(i) (^)> which we will denote e Çf)
measures the degree of contact of this weighted flag with Xx). The multiplicity
of J> can be expected to get bigger, for example, if L0 becomes a more
singular point of X or if Ln_l oscillates to X to higher degree. The main
theorem of this chapter makes this more precise:

Theorem 2.9. In the situation of 2.8, <PX is stable (resp. : semi-stable)
with respect to X if and only if:

Proof We begin with a definition.

Definition 2.10. If \i\ Gm -> GL (W) is a representation of Gm and

Wt is the eigenspace where Gm acts by the character t\ then the ß-weight

of W is Yj i - d If w e Wt then we say i is the ß-weight of w.

0 It seems to be a general fact of life that one must go up to some (r +1) dimensional
variety—here X x A1—to measure such a contact on an r-dimensional variety.

CO

i — — oo
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1) The limit cycle. If A/A(t> is the image of by (t), then taking

lim XH,) gives a scheme XA(,)> and an underlying cycle X, both of which
*--> 0 b

are fixed by X. Moreover, $xm (<Px)m so if <PX £ <Px,i where
i a

<PX i is the component of <PX in the Ith weight space; then

®xm - Z ®x:,
i — a

ta [<*>*,« +1 (other terms)]

Hence, $x L>Xa and a is the A-weight of &x. By definition, <PX is stable

(resp : semi-stable) with respect to A if and only if a < 0 (resp : a ^ 0) or
equivalently if and only if the 2-weight of <PX is <0 (resp: ^ 0).

2) The next step is to connect this weight with a Hilbert polynomial;
this is done by:

Proposition 2.11. Let Vr c P be fixed by a 1-PS A of SL (n + 1),

let I be the homogeneous ideal of V and let Rn (k [x0, Xn]/I)n (i.e.
00

V Proj © Rn)). Let av be the A-weight of &v and r„ be the A-weight
n=0

of Rn. Then for large n, if is represented by a polynomial in n of degree at
most (r+1) with n.l.c. av.

Proof a) Assume V is linear. In suitable coordinates, we can write
~ ta° 0

V — V (Xr+l9..., Xn) and A{t) Then in the notation

0 f*
of 1.16, the Chow form of V is the monomial

ç*V det(uy),ij- 0,

r
Hence <Py <LV and has weight Yj ai• On the other hand the A-weight of

i 0

Rn depends only on ci0 ar, is symmetric in these weights, and is linear in
r

the vector (a0, ar),hencedepends only on X By considering the case
i 0

a0 ar we see that
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v nn fn\
r„—( 2, <0 dim Rn av

r+ 1
,- o + 1 Vv

which is certainly of the form claimed.

b) V is a positive cycle of linear spaces. Here it is more convenient to
consider the ideal I instead of V. By noetherian induction, we can suppose
the claim proven for all A-fixed ideals /' ^ /. Then if V - let
the ideal of Lly and choose an a e k [X] - I which is a ^-eigenvector of
weight, say, w and such that Jxa <=. I. Now look at the exact sequence:

0 -> a + /// k [x]// -> k [x]// +a 0

The claim is true for / + ß by the noetherian induction. If I' {f\afel)
ZD Jx => /, then via the shift of weights by w, ß + /// k [x]/I'; but this
shift changes the A-weight by an amount w dim [{k [x]//')J) O (nr),
hence does not affect the leading coefficient of the A-weight. The claim for
/', which also follows from the noetherian induction, thus proves the claim
for /.

c) Reduction to case b). Recall the Borel fixed point theorem: if G is a

connected solvable algebraic group acting on a projective variety W, then

there is a fixed point on Og (y) for every y eW. Let [V] be the associated

point of V in HilbPn and consider the orbit of [V] under the action of a

maximal torus T <= SL(n+l) containing X(t). Let [V0] be a T-invariant

point in 0T ([V]). Then V0 is a sum of linear spaces, since these are the

only T-invariant subvarieties of Pw. If we decompose <PV by <PV J)
a

where a runs over the characters of T and <Pav is the part of <PV on which T
acts with weight a, then for any x eT,<PTv ^ c\ <Py for suitable constants

a

cTa. Since <PVo is both T-invariant and a limit of forms <Prv, x e T, <PV{)

for some a. Moreover since V is a A-invariant point, all the characters a

appearing in the decomposition of must have the same value on A,

hence the A-weight of $Fo is the A-weight of $v.
It remains only to compare the homogeneous coordinate rings. Now

V and V0 are members of a flat family Vt, t e S for some connected parameter

space S9 so that if n > 0, H° (Vt, (9Vt («)) are the fibres of a vector bundle

over S. This means that the A-action on these fibres varies continuously,
hence that the A-weights of all the fibres are equal. Now the claim for V

follows from b).
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Remark. The relation between Chow forms and Hilbert points in c)

is really much more general: in fact, Knudsen [12] has shown that there is

a canonical isomorphism of 1-dimensional vector spaces k <PV [(r+ l)st

"differences"—formed via ®—of successive spaces in the sequence
Adim RnR„], and it is possible to base the whole proof of 2.11 on this.

3) Next we will see how to obtain XA(0) by blowing up JC Consider the

map
Ax : GmxI-^P

(f, X.) r-> X (i (x).

If the embedding of Xis defined by s0, sn e T [X, 0X (1)] and the action of
n

a (t) is by (a0,a„)i-> f°a0,fnâ„)with ^ rx Sä Sä and £
1 0

0 (i.e. (0, 0, 1) is an attractive fixed point and (1, 0, 0) is a repulsive
fixed point), then A*x (Xx) Now ry is a unit on Gm x X, so

changing the identification A* (0pn (1)) 0Gm ® (0 ^ un^ we

can assume A* (Xx) tpiSi where pt rt — y is normalized as in 2.8 so

that pn ^ 0. Then Ax "extends" to a rational map A1 x X P" which is

defined by the section { tPist }ef (A1 x X,p*Ox (1). J is just the ideal
sheaf these generate in $Aixx and Z is just the set of base points of the
rational map. Blowing up along J gives the picture

E
exceptional

divisor

P2 /
X P

where the morphism A is defined by the sections {tPiSi} in r [B, (p2n)*
(0(1 ))(-£)]. Now Im (A) is the closed subscheme of A1 x P" given by

m

Proj © where
m 0

B Bj(Ax

'/ \A1 x X

/
A1 x P"

Pi
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p [t]-submodule of r (X, & ®kk [r]
(2.12) Km —

|_generated by m degree monomials in { tPist }_

In fact, Im A is flat over A1, because of :

Lemma 2.13. Let S be a non-singular curve, X flat over S and f:X
-» Y be a proper map over S. Then the scheme (f(X), $y/ker/*) is flat
over S.

Proof. We may as well suppose S Spec R; and then this amounts to
showing the $y/ker/* has no ^-torsion: if a e0y/ker/*, r e R, then

r a 0 => r .f* a ** 0 => f* a 0 => a 0.

In particular, we see that Xx{0) is the fibre of Im A over t 0, i.e. XÀ(0)
m

Proj © RJtRJ.
m- 0

4) The proof is completed by making precise the relation between «/
and the 2-weight of One must be careful however because there are two
Gm-actions on RjtRm, that given by the identification RfitR^ — © (trist) k,
which is just 2, and that given by the identification RJtRx © k\
call this action p. The weights of p on RJtRm are just those of 2 translated

by my. By Proposition 2.11

2-weight of <Px (2-weight of RJtRm)

n.l.c. (^-weight of RJtRm + ym dim (RJtRm))

(r + 1 deg X " \
n.l.c. (ju-weight of RJtRJ - —— pt

\ n + 1 j 0 J

using y Y, Pi and
n + 1

mr
dim RJtRJ(deg Xx(0)) — + lower terms

r
(deg Jf) mr

+ lower terms.
r

A droll lemma allows us to re-express the p-weight of RjtRm.

Lemma 2.14. Let W be a k-vector space and let Gm act by p on W

with weights pn X p;i_1 ^ p0 0. Let Wt be the eigenspace of weight

pi and let W* be the k [t]-submodule of W ® k [t] generated by © tPiWt
Then dim (k [t] ® W/W*) p-weight of W*/tW*.
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Recalling the definition of Rm (2.12), and applying this to the ^-action on
RJtRm, we see that the /^-weight of RjtRm is just: dim(T (X, (9 (m))
®kk [t]/Rm). But the sections { tPiSi} whose mth tensor powers generate
Rm, also generate «/ p*2 (^x(i>) so by a) and b) of Proposition 2.6, this
last dimension can be used to calculate e {J). Putting all this together, we
see that:

&x is stable with respect to X

<=> 2-weight of $x < 0

(r+l) "

- 7-7T;degX Y <0
+1) ,;=o

which, with the analogous statement for semi-stability, is our theorem.

2.15. Interpretation via reduced degree. If Xr c= Pn is a variety,
its reduced degree is defined to be:

L'Enseignement mathém., t. XXIII, fasc. 1-2.
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red. deg X)dCg X
n + 1 — r

A very old theorem says that if X is not contained in any hyperplane then
red. deg (A) ^ 1. Reduced degree measures, in some sense, how compli-
catedly X sits in PM, and there are classical classifications of varieties with
small reduced degree. For example if X has reduced degree 1 and is not
contained in any hyperplane then X is either

a) a quadric hypersurface

b) the Veronese surface in P5 or a cone over it
r

c) a rational scroll: X P © 0pi (nj) cz P^, nt > 0
i 0

r
where N £ (nt + 1) — 1, or a cone over it. (This is called a scroll because

i=0
the fibres P'"1 of X over are linearly embedded.)

Some other facts about reduced degree are:

i) canonical curves, K3-surfaces and Fano 3-folds have red. deg 2;

ii) all non-ruled surfaces and all special curves have red. deg ^ 2. (For
special curves, this is just a restatement of Clifford's theorem.)

iii) for ample L on X\ the embedding by L®r has reduced degree

asymptotic to r as n co ;

iv) red-deg is preserved under taking of proper hyperplane sections.

It would be very interesting to know whether almost all 3-folds (in a sense

similar to that of ii) for surfaces) have red. deg ^ 2 + s. The following
definition is introduced only tentatively as a means of linking the present
ideas to older ideas (e.g. Albanese's method to simplify singularities of
varieties):

2.16. Definition. A variety Xr cz PM is linearly stable (resp. linearly
semi-stable) if, whenever pn~m~1 c P" is a linear space such that the image

cycle pL (X) of X under the projection pL : P" — L -> Pm has dimension r,
then red deg pL (X) > red deg X (resp. red-degpL (X) ^ red deg X).

Attention: pL is allowed to be finite to 1, and which case pL (X) must be

taken to be the image cycle. Linear stability is a property of the linear

system embedding X; if Xr <=. Pw is embedded by F (X, L), then X linearly
stable means that for all subspaces A c: r (X,L)
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àegPiXX)>deg2f

dim A — r n + 1 — r

or equivalently, by applying Proposition 2.5,

deg X
e (^a) < (codim A)

n -h 1 — r

Examples, i) when X is a curve of genus 0, it is linearly semi-stable but
not stable. When g ^ 1, Clifford's theorem shows that X is linearly stable
whenever it is embedded by a complete non-special linear system (see § 4

below).

ii) P2 is linearly unstable when embedded by (9 (n), n St 3 because it
projects to the Veronese surface. In view of the next proposition, a very
interesting problem is that of finding large classes of linearly (semi)-stable
surfaces.

(It may, however, turn out that linear stability is really too strong, or
unpredictable, a property for surfaces in which case this Proposition is not
very interesting

Proposition 2.17. Fix Xr c Pn, let C be any smooth curve and let L
be an ample line bundle on C. Let : C x X PN(l) be the embedding
defined by { Sj ® Xt) where { Sj } is a basis of T (L®1) and Xt
e F (V, 0X (1)) are the homogeneous coordinates. If Ft (Cx X) is linearly
semi-stable for all large z, then Xr is Chow-semi-stable.

Proof. Choose a 1-PS: X{t)

tp o

0

0

tPn

S P i
iüT

as in (2.8).
Choose a point p eCanisomorphism Lp s &p and an i large enough that
L®' is very ample and L0i - p0p) is non-special. Then the map

© r(c,L®i).xl © \ß>PJC!JißM Xi
1=1 1=0

n
is surjective. Let A1 be the inverse image of © [0^c/^p?c) ' xt\ under

1 0

this map and let J'A <= &CxX be the induced ideal. Since all the L®; are
trivial near p and has support on the fibre of x C over P, the ideals



JA are independent of /; we denote this ideal by JA. The hypothesis says
that for large i

deg(CxI)
e (JA ä 7-77— codim yl

(n + 1) (/î (L1) — r — 1)

(r +1) deg XdegL®' ^~
(n + 1) (deg L®' — gr + 1) — r — 1

and letting z -> oo,

e
+ £
n + 1

J O

But C x X along p x X is formally isomorphic to A1 x I along 0 x X
with corresponding J 'A s, so by Theorem 2.9., X is Chow-semi-stable.

§ 3. Effect of Singular Points on Stability

We begin with an application of Theorem 2.9.

Proposition 3.1. Let X1 cz Pn be a curve with no embedded components
such that deg X/n + 1 < 8/7. If X is Chow-semi-stable, then X has at
most ordinary double points.

Remarks, i) When n 2, degJT/zz + l < 8/7 deg X < 4 and the

proposition confirms what we have seen in 1.10 and 1.11

ii) Suppose L is ample on l1 and Xm c i$ the embedding of X
defined by T (X,L®m). By Riemann-Roch, deg XJN(m) -» 1 as m -» oo, hence :

Corollary 3.2. v4zz asymptotically stable curve X has at most ordinary
double points.

In particular, if X a P2 has degree ^ 4 and has one ordinary cusp,
then, in P2, X is stable but when re-embedded in high enough space, X is

unstable! The fact that this surprising flip happens was discovered by
D. Gieseker and came as an amazing revelation to me, as I had previously
assumed without proof the opposite.

iii) We will see in Proposition 3.14 that the constant 8/7 is best possible.

Proofof3.1. We note first that a semi-stable X of any dimension cannot
be contained in a hyperplane : if X a V (X0), then X has only positive
weights with respect to the 1-PS
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m
0

The plan is clear: by Theorem 2.9, it suffices to show that if x is a bad

singularity of X,then there is a 1-PS.

2(0

such that

tpo
0

0 tPn

I Pi>—TT LPi-7 i=0 +1) ; o

First, if x e X has multiplicity at least three, then take coordinates

t

(X0,..., Xn) so that x (1, 0,..., 0) and let X(t)

1

Then

1

s &A1XX(1) is generated by {tX0, }. Since { X„ }
generate JiXiX and X0 is a unit at x, J (t, @A1 xX, i.e. J is the maximal
ideal of (0, x) on A1 x X. Therefore, e {J) mult(0)X) (A1 xj) mult,, X

n

^ 3, which does what we want since 16/7 Y Pi 16/7 < 3.

Now if x g F is a non-ordinary double point—i.e. a double point whose

tangent cone is reduced to a single line—then dim ' x,Xr x) 2 and

I 3 where I is the ideal of the tangent cone at x. Choose
coordinates (X0, Xn) such that

i) X0 (x) * 0

ii) v =* XJX0 and u X2/X0 span «

iii) ue I so that w2 g

iv) X3IX0,...,XJX0eJt2XiX

vx,xh 'fix
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Then if l(t) the associated ideal is

1

J (t4X0, t2Xu tX2, X3,..., Xn). But (PAixX// is supported only at the

point (0, x) hence e {/) is again Hilbert-Samuel multiplicity and is at least

equal to the multiplicity of the possibly larger ideal J' (t4, t2v, tu, Ji^>x).
If / is the ideal (t4, then since

(it2v)2 t4v2el2
(tu)4 t4 (u2)2 e t4 (JIX2x)2 cz I4 by iii)

J' is integral over /. Hence

e{J) ^e(J') e (I) (4) (2). e (^X>x) 16 ~ £ Pi
' i=o

as required.
The attempt to systematize this theorem leads to a numerical measure

of the degree of singularity of a point. The results that follow are part of
a joint investigation of this concept by D. Eisenbud and myself. Full proofs
will appear later. Many of these results have also been discovered
independently by Jayant Shah.

Definition 3.3. If (9 is an equi-characteristic x) local ring of dimension

r, and k ^ 0 is an integer, then we define ek (0), the kth flat multiplicity
of (9, by

e(I)
e0 ((9) sup / of finite colength in

(r col(I)
ek ((9) e0 ((9 [[tu /J])

A A

It is obvious that if (9 is the completion of then ek ((9) ek ((9).

Proposition 3.4. ek (0) ^ max (1, e ((9)j(r + k)

3) The hypothesis on Q can be avoided, and the proof simplified, by a use of the
associated graded ring instead of the Borel fixed point theorem (D. Eisenbud).
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Proof. The second bound is obvious. To get the first note that if J
e (J) rf

is any ideal of finite colength then e (/") nr e (J) and col (,Jn) - ——

+ O (f'1), hence

e(J")
» 1 as n -> oo

r col (J")

To get an upper bound on ek we first obtain another lower bound

Proposition 3.5. e0 ((9) ^ e0 ((.V [[/]]); moreover if r dim (9 > 0

and there is equality, then the sup defining e0 ((9 [[/]]) is not attained. Hence

e0((9)^ei (0)^e2(0) ^ Ht 1

Proof. We begin by giving a lemma which is useful in the applications of
e0 as well.

00

Lemma 3.6. Let J> be the set of ideals of (9 [[r]] of theform I © 1\ t \
i= o

where I\ is an increasing sequence of ideals offinite colength in (9 such that

IN — (9 for some N. Then

e (I)
Co (0 [[*]]) sup —rTnlEjf col (/)

Proof. For any equi-characteristic local ring R, let Hilb'jj be the
subscheme of the Grassmanian of codimension n subspaces of RjJ/nR

parametrizing those subspaces which are ideals: since any ideal in R of
colength n contains J/nR, Hilb7^ parameterizes these ideals. Let e: Hilb'^
-> Z be the map assigning to an ideal its multiplicity. By results of Teissier
and Lejeune [23], e is upper-semi-continuous.

The natural Gm-action on (9 [[£]] by t -> At induces a Gm-action on
Hilb^[[n]. By the Borel fixed point theorem, there is, for every I, an ideal
fixed by this action in 0Gm (/). Such an ideal must, by the upper-semi-
continuity of multiplicity have multiplicity at least as large as e (/). Thus,
to compute e0 ((9 [[*]]) it suffices to look at Gm-fixed ideals of finite colength
and J is just the set of such ideals.

00

Fix I ® ft1, where 70 cz f a c= IN (9 is an increasing sequence
i 0

N-1
of ideals in (9. Clearly col (/) ^ col (If To bound e (I) we note that

i 0
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/« (js).©(/S-1M ©(/r2'?f2) ©- ®(i0ir1t"-1) ©

©(/^") ©(/r1/^1) © ©(/v 2/vi'(,v "" ') <

(3.7) ©(/"w_1f<N-1)") t*"-1»*1) ©

©(cf^") ©...
=>/"= (75 © Jo < ©... ©/Sf'""1) @(Jîr" ©... ©

t(N~l)n®rNz\t(N~1)n+1©.... ®iN^lLtNn~1)

®<StN"®...
Hence,

col (7") ^ £ n col (7") + £ col (7Î_j)
7=0 j l
Mr+1 N— 2 nr+1

£ eW + rr^v7e^-i) + OK)
r / o ('•+!)!

(We have evaluated the second sum by "integration"!)
Finally

N — 2 N-l
/TN (r + l) Z e(Ii) + ^ (Fjv-l) Z e(^i)

£ bU ^ 7 0 ^i 0

(r +1) col (/) v wo iv1 im(r + 1) Z col (If) r Z co1 CO
1 0 7 0

with strict inequality if r > 0

*CO
max ^ c0 (G)

I r! col (I,)

Corollary 3.8. If G is regular, e0{G) 1 and if r > 1, the defining

sup is not attained.

Corollary 3.9. (Lech x). For all G and all 1 a G, e (I) ^ r e (G)

col (7), hence e0 (G) ^ e (G).

Proof None of the quantities involved change if we complete G.

But after doing this, we can write G as a finite module over G0

k [[tu tr]] so that:

(*) There is a sub C0-module ^ $ such that the quotient G/G0 is an

C0-torsion module M.

]) Cf. [13], Theorem 3.
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Let I0 I n 00. Then col (/) ^ col (70) and

dim ((9/1") ^ dim (9/Iq (9

^dim (M/JS M) + dim(ffS(<P)//S 0CÏ*})

Condition (*) implies that dim (Mjln0 M) is represented by a polynomial

of degree less than r, hence

e (/) ^ e (0) e (/0)

^r \ e {(9) col (70) by Corollary 3.8

^r\e((9) col (/)

We state two other useful properties of ek:

Proposition 3.10. i) If (9 and (9' are local domains with the same

fraction field and (9' is integral over (9, then ek {(9') ^ ek {&).

ii) If (9 (k [[t]] + l?) is an augmented k [[t]]-algebra, let (9n 0^»,

a local ring with residue field k ((/)) and let (9S (9jt(9 be its specialization

over k; then ek (0n) X ek (ßs).

We come now to the main definitions.

Definition 3.11. (9 is semi-stable if e1 ((9) 1 ; (9 is stable if in

addition, the defining sup is not attained.

This terminology is justified by the following proposition which shows

that the semi-stability of the local rings on a variety X is just the local

impact of the global condition of asymptotic semi-stability for X.

Proposition 3.12. Fix a variety X\ an ample line bundle L (9X{D)
on X, and p e X. Then if (9p>x is unstable, (X, L) is asymptotically
unstable.

Proof Choose an ideal / c (9p>x [[*]] such that

i) e (/) (1 +e) (r+ 1) col (/), s > 0

00

ii) I — © fit1, I0 c= f a c= IN (9P}X a sequence of ideals of
i 0

finite colength. (This is possible because of Lemma 3.6).

$ Let <Pm denote the projective embedding of X by T (X, L®m). Choose m
s large enough that
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a) for all Qe X,T(Xr,Lm) *
-,T( Lm/I0J?Q>X Lm) is surjective

b) Lm is very ample

x ,n, 1 mr{Dr) 1 deg &m (X)
c) h° (X, Lm) > —- 6 mV ;

1+8 r 1+e r

(That the last condition can always be realized is a consequence
of Riemann-Roch for X.)
Next choose a basis XUj, 0 £= i ^ N, of r (X, Lm) such that

X0tj is a basis of i/z-1 (70),

Xlyj is a basis of \j/~l (I0),

is a basis of F (X, Lm)/^_1 (Z^),
Finally, let X be the 1-PS which multiplies Xitj by tl : i.e. in the form of
(2.8) p(l'j) z; then by assumption (a) the ideal «/ corresponding to
2 in (2.8) is just I and is supported at the single point (0, p) e A1 x X.
Moreover, by condition a)

X />"•» IV dim ((?//„_!) + (IV -1) dim (h-Jh-2)
l,i + + 2dim(/2//!) + dim/i/fo col

(This is Lemma 2.14 again). Hence,

e{S) e(I)
(1 +e). (r +1) col (f)

ri ^ / i\ deg v 'xi+".(r+" •(1+8)ft,(I.)T^'J'
(r +1) deg (A-) ^ (iJ)

(Lm)

By Theorem 2.9, (X) is unstable.

Restating Corollary 3.7 gives us a trivial class of stable points:

Proposition 3.13. If (9 is regular and ofpositive dimension it is stable.

The next step is to pindown the meaning of semi-stability for small

dimensional local rings. For dimension 1, we can be quite explicit:
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Proposition 3.14. If dim (9 1 and (9 is Cohen-Macauley (i.e.

Spec (9 has no embedded components), then :

i) (9 stable <=> (9 regular o e {(9) e0 ((9) ei ((9) — 1.

ii) 0 semi-stable but not stable o (9 an ordinary double point o e {(9)

- e0(G) - 2, ^(0) e2((P) - 1.

iii) § a higher double point => ex (0) ^ 8/7.

iv) (9 a triple point or higher multiplicity => et (0) ïfe 3/2.

Proof If (9 is a triple or higher point, so is (9 [[/]], hence e ((9 [[/]])
3, and by Proposition 3.4, e1 (0) e0 ((9 [[*]]) 3/2.
As for Cohen-Macaulay double points, when char. ^ 2 these are all

A A

of the form (9 k [[x, y]]/(x2 ~yn), 2 ^9n ^9 oo. (Think of (9 as a quadratic
free k [[y]]-algebra; the argument can be readily adapted to char. 2 also).

If n2^3, then in k [[x, y, t]]/(x2/= (x2, xy, y2, xt, yt2, t4).
(This, of course, is the ideal of Proposition 3.1 again). I has complementary
basis (1, x, y, t, yt, t2, t3), hence col (/) 7. I claim e (I) 16, which
will imply iii). We first note that I is integral over (y2, tA). We compute the

multiplicity of (y2, t4) as

intersection-multiplicity at M ((Spec (9) (y2 0) (/4 0))

8 intersection-multiplicity ((Spec (9) (y 0) (£

16

since (9 is a double point.
When (9 is an ordinary double point, I claim e0 ((9 [[/]]) 1. Since this

e (JT) 2
value is attained by the maximal ideal JI : - 1 this will

2 col (M) 2

prove ii), hence i) in view of Proposition 3.13.

In general, if (9 k [[x, y]]/(x y), an ideal I cz (9 [[*]] corresponds to
a pair of ideals J c k [[x, t]] and K cz k [[y, t]] such that J + (x)/(x) and
K + (y)/(y) have the same image, say (tn), in k [[r]]. A rough picture is

given below: the condition on the two ideals ensures that they glue along
the intersection of the two planes.
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Lemma 3.15. If I c £ [[x, 7]] / + (x) (x, ya), then e{I)
2 col (I) - a.

Proof By applying Lemma 3.6, we can reduce to the case where /
is generated by monomials:

00

I - © (/'. x1).k[[y]]with ar0ïâ^ ^ 0.
1=0

Then as n (3.7):

In ZD (ynro)k ®(yn~1)ro + r^x)k ® (y{n~2)ro+2r^x2) k ©

© (.ynrixn) k © (y(»-i)n + r2xn + i) k 0 @ fe @

n (n +1) 9 9 9
=> col (/") r0 + nzr1 + nzr2 + + ^ Lv-i

e (I) r0 a
=> ___ ^ _ -I- Tl -I- + rN_1 col (/)--.

Remark. If / c (9 [[t]\ is of the form of Lemma 3.6, the expansion
(3.7) for 7n, which we have used again here, can be used to give even better



bounds for e (/). To get these however, requires the more involved theory

of mixed multiplicities which will be discussed in § 4.

The meaning of semi-stability for two dimensional singularities is not

yet completely worked out, but what follows gives a good overview of the

situation.

Definition 3.16. If (9 is a normal 2-dimensional local ring, x is the

closed point of Spec (9, and X* —-—> Spec 0 is a resolution of (9 (i.e. %

is proper and birational), then we define

i) big genus of (9 dim R1 n% {(9xf)
(R1n% is a torsion (9-module supported at x)

ii) little genus of (9 — sup (pa (0Z)), where Z runs over the effective cycles

on 7i ~1 (x).

Wagreich [24] has shown that big genus little genus—hence the names—
and Artin [3] has shown that if the little genus is zero then so is the big
genus. (But when little genus 1, big genus may be > 1). We call (9:

rational (resp. strongly elliptic) if its big genus is 0 (resp. 1), and weakly
elliptic if its little genus is 1.

If there is to be any hope of constructing compact moduli spaces for
semi-stable surfaces, the non-normal singularity xyz 0 must be semi-
stable—in fact, it is. But xyz 0 is the cone over a plane triangle so the

singularities of surfaces will be a limited class of rational and strongly
elliptic normal singularities and their non-normal limits.

We now list without proof some classes of semi-stable singularities.

triple point on it is really a

degenerate "elliptic" singularity.
In fact, xyz — 0 is a limit of
the family of non-singular cubics

xyz + t(x3+y3 + z3) 0. Similarly,

the standard singularities
An_t: xy zn and Dn: x2=y2z
+ zn have non-normal limits xy

0 and x2 j2z respectively
as n -> oo. We can summarize
these considerations in the
heuristic conjecture: the semi-stable
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3.17. Elliptic polygonal cones. In P"-1 take a generic n-gon
n

u PiPi+i (Po^Pn + i) and the cone in Cn over it. This is a union of
i 0

«-planes crossing normally in pairs and meeting at an n-fold point at the

origin. We also allow the degenerate cases n 2 (local equation x2=y2z2)
and n 1 (local equation x2=y2 (y + z2)) which correspond respectively, to
glueing two planes to each other along a pair of transversal lines, and to
glueing a pair of transversal lines in a plane together as shown below.

Proposition 3.18. Elliptic polygonal n-cones are semi-stable if and

only if 1 ^ n ^ 6. Moreover, all small deformations of these singularities
are semi-stable.

Examples of such singularities are:

i) Cone over a smooth elliptic curve with generic j in P'1, 3 ^ ^ 5.

(In fact, I expect this holds for arbitrary j). These are also called the

simple elliptic (Saito) or parabolic (Arnold) singularities, and may be
CO

described as © F (.E, Lm) where E is an elliptic curve and L is a line
m 0

bundle of positive degree n : with this description, they are also defined

for n 1,2. For small /?, these have the form

x2 + y3 + z6 + a (y2z2) =0 (n 1),
x2 + y4 + z4 + a (y2z2) 0 (n 2)

x3 + y3 + z3 + a (xyz) =0 (n 3)

ii) The hyperbolic singularities of Arnold:
1 1 1

xyz + xn + ym + zp 0 - + — + - < 1

n m p

iii) Rational double points.

iv) Pinch points: these have local equation x2 y2z.
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3.18. Rational polygonal cones. In P" 1 take (n- 1) generic line

segments P0 Px u P1 P2 -• u Pn-\K and in take the cone over them:

one obtains (n — 2) planes crossing normally in («—1) lines.

Proposition 3.19. Rational polygonal n-cones are semi-stable if and

only if 2 ^ n ^ 6. Hence, all small deformations of these singularities are

semi-stable.

A typical singularity which arises in this way is the cone over a rational
normal curve in P"-1, 2 ^ n ^6.

7 ~

By applying the semi-stability condition to the ideal I — © tl~j (Z-7)

j o

c ^ [[/]], where I is an ideal in (9 and ~ denotes integral closure in 0,
one can prove the following necessary condition for semi-stability:

Proposition 3.19. If (9r is semi-stable, I c (9 and P (/) dim (0/(1%
then

e (/) ir+i
P( 1) + +P(i) ^

(r +1)

When r 2, and is Cohen-Macaulay this reduces us to ten basic

types of singularities. In the first few cases we have listed the singularities
of this type which are actually semi-stable.

1) Regular points: always stable.

2) Double coverings of C2 with branch curve of multiplicity psS 4: semi-
stable here are,

a) rational double points and their non-normal limits xy 0,

x y2z,

b) hyperbolic double points,

c) parabolic double points.

3) Triple points in C3: Semi-stable are,

a) cones over non-singular elliptic curves,

b) hyperbolic triple points.

4-5) Triple and quadruple points in C4.

6-7) Quadruple and quintuple points in C5.

8-9) Quintuple and sextuple points in C6.

10) Sextuple points in C7.
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Remark. With Eisenbud, we made some computations by computor
to eliminate cases; the computer came up with some amusing examples.
For instance it found an ideal / in k [[x, y, z, t]\/(x2 +y3 + z7) with col (/)

63,398, mult (/) 381,024, showing that e0 ^ 1.000167, hence that
the singularity x2 + y3 + z7 0 is unstable.

Further restrictions, confirming the heuristic conjecture, on what
singularities are semi-stable are provided by:

Proposition 3.20. If (9 is normal and semi-stable then (9 is rational
or weakly elliptic. Moreover, there are no cuspidal curves, i.e. generically
all singular curves are ordinary.

We omit the proof except to note that the last statement comes from the
observation that for large n the choices In (T9, u9n, v9n) ~ show that
c2 (k [[T2, T3]]) ^ 1 + 22/221

Now suppose (9 is not Cohen-Macaulay. We can create a slew

of stable $'s using i) of Proposition 3.10. For example if k [[x, >']]
(9 => k [[x, xy, y2]], then (9 is semi-stable since the ring on the right which

is the pinch point is semi-stable; a typical example is (9 k [[x, xy, y2, y3]],
a very partial pinch in which only the y-tangent has been removed.
Fortunately most of these points cannot appear as singularities of varieties on
boundary of moduli spaces as they have no smooth deformations. More
precisely, (cf. [27]):

Theorem 3.21. If (9 is a 2-dimensional local ring which is not Cohen-

Mcicauley such that (9 (9rjt(9' where (9' is a normal 3-dimensional local

ring ; let (9novm be its normalization and (9 {a e (9novm | for some n, JinQ a

c •

Then i) (9 is a local ring

ii) If in addition (9 has characteristic 0, then

dim ((9/(9) ^ big genus of (9.

Remark. If, as seems likely, in view of Proposition 3.20 the big genus

of the Cohen-Macaulay ring (9 is 0 or 1, this means that (9 must be nearly
Cohen-Macauley.

We conclude this section by outlining an as yet completely uninvestigated

approach to deciding which singularities should be allowed on the

objects of a moduli space.
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Definition 3.22. (9r is an insignificant limit singularity if, whenever (9

is an (r+ 1) dimensional local ring such that (9 (9'\i& for some t e (9',

n : X Spec & is a resolution of Spec (9' and E a X is an exceptional

divisor (i.e. dim tz (E) < dimE), then E is birationally ruled, that is,

the function field of E is a purely transcendental extension of a proper sub-

field. Equivalently, setting (9jJfQ k, this says that whenever R is a

discrete rank 1 valuation ring containing & with tr deg.kR/JtR r,
then R/J/r K(t), for some K such that tr. deg.kK r — 1.

Examples. 1) xy 0 is insignificant because on deforming this only
An singularities arise.

2) x2 + y3 0 is significant because the deformation t6 x2 + y3

blows up to a non-singular elliptic curve with (E2) - 1. Similarly
I can show that all higher plane curve singularities are significant.

3) x3 + y3 + y4 - 0 is significant because t12 x3 + y3 + y4 blows

up to a 3-fold containing a K3 surface.

4) Jayant Shah [26] has proven that rational double points and Arnold's
parabolic and hyperbolic singularities are insignificant. As a limiting
case, normal crossings xyz 0 is insignificant.

Remarks. 1) Why should birational ruling of exceptional divisors be

the right criterion for insignificance The reason is that all exceptional
divisors which arise from blow-ups of non-singular points are birationally
ruled and all birationally ruled varieties arise in this way. So on the one

hand, such exceptional divisors must be permitted, and on the other, the

examples suggest that sufficiently tame singularities cannot "swallow"
anything else.

2) The examples suggest that (9 semi-stable and (9 insignificant are closely
related. For instance, perhaps these are the same when embedding-dirn (9

1. In dim 2 for example, after hyperbolic and parabolic singularities in
the Dolgacev-Arnold list [2, 7] of 2-dimensional singularities come 31 special
singularities. These are all unstable and in a recent letter to me Dolgacev
remarks that all of these have deformations which blow up to K3 surfaces

as in Example 3. If semi-stability and insignificance turn out to be roughly
the same in arbitrary dimension, we would have a very powerful tool to
apply to moduli problems.
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§ 4. Asymptotic Stability of Canonically Polarized Curves

The chief difficulty of using the numerical criterion of Theorem 2.9

to prove the stability of a projective variety is that it is necessary to look
inside &Xxai to compute the multiplicity eL («/). To circumvent this

difficulty, we will construct an upper bound on eL (ß) in terms of data on X
alone. For curves, this bound involves only the multiplicities of ideals

ß <= 0X, but for higher dimensional varieties—in particular, surfaces—it

requires a theory of mixed multiplicities, i.e. multiplicities for several ideals

simultaneously. To motivate the global theory, we will first describe what
happens in the local case. Here the basic ideas were introduced by Teissier
and Rissler [22]. Recall that if (9 is a local ring of dimension r with infinite
residue field and 7 is an ideal of finite colength in it then whenever fu ...fr
are sufficiently generic elements of 7, e (7) e ((/i, ...,/r)). This suggests

Definition 4.1. If (9r is a local ring and Ilf..., Ir are ideals offinite
colength in (9, the mixed multiplicity of the It is defined by

e (Ii,Ir)e(C/\,

where ft e f is a sufficiently generic element. (The set of integers e ((/j, ...,/r))
has some minimal element and a choice (/l5 is sufficiently generic if
the minimum is attained for these f.)

The basic property of these multiplicities is :

Proposition 4.2. Let Iu be ideals offinite colength of a local

ring (9r and let

Pr(mu...,mk)E =2—
»i r II (ri 0

where l\ri] indicates that IL appears rt times. Then

i) I dim (ßj fi u •••> mk) I °(Œmi)r~1)
i 1

ii) There exists a polynomial of total degree r

P (ml9 mk) Pr (mu mk) + lower order terms

and an N0 such that if mt^ N0 for all z, then

dim (<P/n IT')
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Proof. See Teissier and Rissler [22].

Using this we obtain the estimate:

Proposition 4.3. Let I a (9 [[?]] be an ideal offinite codimension and
1 let Ik= {ae(9 \atkel) ; then I0 Ç f <= £ IN (9, N > 0. Then
* for all sequences 0 r0 < rx < < r{ N,

e(I)~ S (rfc+l~rfe) E 1]) •

k 0 j 0

Proof Since / :d ® tri Ir.

ln => + (P) + rr'1 In(tn(9 + tri + 1 (9 + ...+t2ri~10)

+ + (tin~1)n (9 + + tnn~1 (9)

+ rri(tnn&±...+tin-1)n+r2-1®) +rr;1ir2(t(n-1)ri+r2(9 +
[ + +/^1(r,-ïff + +/^(r(/î~1)rz-1+r^ +

+... + r*0 [[>]].
whence

dim (0[[t ]]//") E E dim ((9/(1rl~l .i;k+1))
k=0 i=0

I n—lf-r ^
(4.4) E (>*+i -'"t) E

fc 0 i 0
E * iliL) (n ~ iy~jiJ+RtLA j (r -j) 1 ,fc+1 V

By Proposition 4.2 i) each remainder terms Rt is <9(/2r_i). Indeed, ii) of
4.2 says that except when i or n - i < N0, the Rt are all represented by a

polynomial of degree r — 1 so that we can obtain a uniform 0(//_1)
71 — I

estimate for the Rt; hence E <9 (/7r).
i 0

But the n.l.c. of the (r+l)st degree polynomial representing
dim (ß [[*]]//") is by definition e(7); so evaluating the n.l.c. of the sum
in (4.4) using the lemma below, gives the proposition.

/ (r — /) n~1
Lemma 4.5. nr+1 V («-i)r~j iJ + O (ur)

(r + 1) / 0

Proof. We can reexpress the left hand side in terms of the ^-function as

tj(l-ty-jdt] nr+1,_r+1
L ni "r+1 ß O's r —j) n -(r +1)
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and the right hand side is just another expression for nr+i times this integral
as a Riemann sum plus error term.

To globalize these ideas we combine them with some results of Snapper
[5, 21].

Definition 4.6. Let Xr be a variety, L be a line bundle on X and

Ju be ideals on (9X such that supp ((9xj,Is proper. Choose a

compactification X of X on which L extends to a line bundle L and let
7i : B -» X be the blowing up of X along so n~1 C^f)
Let n*L (9b (D). We define

(Z)r) - ((D-£i) (D

We omit the check that this definition is independent of the choice of X
and L.

4.7. Classical geometric interpretation. Suppose X is a projective
variety, L (9X (1) and J> t. L is generated by a space of sections Wt
c= r (Pn, (9 (1)). If Hu Hr are generic hyperplanes of Pn, then # {H±

n n Hr n X) deg X. One sees by an argument like that of
Proposition 2.5, that as the Hi specialize to hyperplanes defined by elements of
W\ but otherwise generic, the number of points in H1 n n Hr n X
which specialize to a point in one of the W/s is just eL u Jr).

We can globalize Proposition 4.2 to give an interpretation of the mixed

multiplicity by Hilbert polynomials.

Proposition 4.8. i) Let Xr be a variety, L1? Ln be line bundles on X
and be ideals in (9X such that supp ((VfiJ' i) is proper for all i.

Then there is a polynomial P (n, m) of total degree r and an M0 such that

if mj X: M0 for all j then

x(X, ® LV I n JV- ® Lï)
i 1 7=1 i 1

Now suppose all the line bundles are the same, say L and let

Pr {m1,mj) E rTTl~\•••'m? -n (r, J)

rf^O
Then

ii) P Qfiïi] mu mt) Pr (ml5 mt) + lower order terms



iii) I x (V LImiIn -?V ®Llmi) - pr (»Ii, -, md I o E mj)'-1)
j 1

(i.e. we retain an estimate assuming only Yjmj ^arSe).

Proof. Making a suitable compactification of X will not alter the Euler

characteristics so we may assume X is compact.
Before proceeding we recall certain facts: If R © Rnil...,ni *s a

/ij^. o

multigraded ring we can form a scheme Proj (R) in the obvious way from
multi-homogeneous prime ideals. Quasi-coherent sheaves J5" on Proj (R)
correspond to multigraded i?-modules M © Mnit_tnv Suppose R0,..., 0

k a field and that i? is generated by the homogeneous pieces

R0, 0j i> o? *• • ; o- Then we get invertible sheaves Lu on Proj (R)
from the modules Mh where Mt (R with zth-grading shifted by 1), and
the multigraded variant of the F.A.C. vanishing theorem for higher coho-

mology says that if !F is a coherent sheaf on Proj (R) then

IV0 (0 L'ji)) I -'nr^°
if >0, all

Now if «/l5 Jk are ideal sheaves on X such that supp (ßxl^ j) is proper
for all z, let srf — © J1. Then $£ is a multigraded sheaf of

mjV^O

^-algebras. Let B Proj (sé); the blow up of X along Yl^j *s Just 71 : R
-> X. If Ej is the exceptional divisor corresponding to J> j, then when
(9b (— Y.mj Ej) coherent and when all the mj are large the relative versions
of the vanishing theorems say:

a) Rl71*(&(-£ mj Ej)) 0 i > 0

b) n.ßi-ZmjEj) [j
7 1

In any case,

c) supp i?1(0 (-J^mj Ej)) has dimension less than r, i > 0

d) ft* (#' (~ £ /7?./£/)) II-T* except on a set of dimension less

than r.
1

From a) and b) we deduce that when all the nij are large, X ai m
X {n*e(- Ej)). Thus, x (S WiU -?V X (X, 0 L?0

- x (5, 0 L"' (—Yj m j Ej))and both of these last Euler characteristics
polynomials of degree by Snapper [5,21], Now if 71* L &B(D),
his result also says,
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r n.\.c. (x(X, fp <g> Llm>)(£my)'(Dr) - (Q>y(Z> 0

rj^O

Srj-r 1I(0!)
0

which is ii). Fix an TV such that ii) holds when all rrij ^ TV.

Now suppose / is a proper subset of { 1, /}, J is its complement and
that values mi < N are fixed for all i e I. Let 7ij : Bj -> X be the blow up
of X along Y[ ^y As above we deduce that 3 N' depending on / and the

jeJ
mh i e / such that if my > TV', yje J, then

x (X, J? j^) X (*,, n^(-Z rny£y)).
iel jeJ

Then applying c) and d) we see that for some C, also depending on I and
the m i, i e /,

IxC- x(Bj,n•*?"(- I *SC( £ m/"1
iel jeJ jW

Combining this with the argument used in the proof of i) and ii) shows that
for some C' (depending on I and the mh i e I)

I x(X, L^/n - Pr(mi•••m,) I ^C'( X m/"1
jeJ

From ii), we get an estimate of this type with a uniform constant C, when
all the mj ^ TV. Since there are only finitely many sets I and for each of
these only finitely many choices for the mu iel with mt < TV we can combine

all these estimates to show: there exists M and C" such that if any
m i > M, then

I x (x, Llmi\ n Sp LImi) -Prim!,mt)^ C"(( £ 1)

j
which is iii).

The following analogue of Proposition 2.6 allows us to calculate mixed

multiplicities in terms of the dimensions of spaces of sections.

Proposition 4.9. If L, Jr1L,..., J> arc generated by their sections,
then

I x (x, L'-J/OI - dim (r (X, LImj)/r (X, J] \

o((llmjy-1)
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Proof. We give only a sketch of the proof which is very similar to that

of Proposition 2.6. One first shows as in the proof of 2.6a), that for

z > 0, hl (LImJ/Y[ Llmi) 0{QjnJ)r~1), hence that

I x (x, rp LImj) - dim r (x, i/w;/n \

0«ZmjY-1)

Using the long exact sequence

o-+r(x,n fV -*• r (x, LImJ)-> r L^/f] j'p LIra-0

this reduces the proposition to showing that

dim (coker (F{X,LXmi) -+f(X, LIm-</[] Jfi O V/hj)1' ')

and this is done exactly as in the proof of 2.6b). (Note that the extra hypotheses

of 2.6b) were not used in this part of the proof.)
The global form of Proposition 4.3 is:

Proposition 4.10. Given a variety X} a line bundle L on X and an
ideal J a (PXxAi with supp (Gx x Ai/«/) proper in X x (0), let { a
e (9x\tk a e J } so that c c c JN Lt L ® ®Ai,
Suppose that L, L «/ Li arc generated by their sections. Then for all
sequences 0 r0 < r1 < < rt X,

k=0 j 0

Proof By Proposition 4.9, eLl («/) is calculated by the order of growth
of

dim [H° (X x A1, Lï)/H° (X x A1, </". LJ)]

Exactly as in Proposition 4.3, for each n, we introduce using the r/s an
approximating ideal sheaf

00

S"^S'H= ©
k 0

where ^„_0 <= ./M <z c for JV > 0. Since

00

H°(X x A x,J?n.L\)=H°(X X A l,© H°(X,jrnk.L"),
k 0

it follows that
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dim (H°(XxA1, L'D/H0x A1,
00

^ X dim W"(X, L»)IH°(X,
k 0

The rest of the proof follows Proposition 4.3 exactly, using 4.9 again to
get the estimate

dim (H° (X, L")IH° (X,L"))

for x (L"/yrk. L"y

Corollary 4.11. If in Proposition 4.10, X is a curve

e

Cli_ (-0 ^ min [ E rk+k - rk). (eL + eL x))]
0 /•<) <ri... < N k 0

If X is a surface,

eLliS)
1

— min [ E (r*+1 - rk) • eL(+ eL Jrk++ (J'y)]
0 ro< < ri N k 0

We now show how this upper bound proves the asymptotic stability of
non-singular curves. It turns out that the estimate is, however, not sufficiently
sharp to prove the asymptotic stability of curves with ordinary double

points: more precisely, if J> is the ideal associated to a 1-PS À with
normalized weights pi then the estimate of the corollary may be greater than
2 deg X

Ŷ pi (cf. Theorem 2.9)
n + 1

Theorem 4.12. If C1 <= is a linearly stable (resp.: semi-stable)

curve, then C is Chow stable (resp.: semi-stable).

Proof. We prove the stable case; the semi-stable case follows by
replacing the strict inequalities in the proof by inequalities.

Fix coordinates X0, XN on and a 1-PS

tp o 0

m Po—Pi & ••• — — 0

t"N



Let J be the associated ideal on 0CxAi and let Jk c (9C be the ideal defined
N

by -fk.L= [sheaf generated by Xk,thusJ ^ tn J k. The

deg C
linear stability of Ximplies (cf. 2.16), e (Jk) <

N

k o

codim < Xk,..., XN >

deg C k

eL(*)

So using Corollary 4.11,

min [Z (Psk - Psk+i)+ eL i-^sk+i))]
0 sq<...< sk= N

deg C
Jj(psk-Psk+1) (sk + sk+l)< mm

0 s0< ...< sk= N
N

2 deg C *
In view of the Lemma below this implies eL (J) < - — }- Pi wlllcil m

X + 1 î o

turn implies C is stable by Theorem 2.9.

Lemma 4.13. If p0X± ^ pn 0, then

Proof Draw the Newton polygon of the points (/c, pk) as shown below

k

P

mm
0 so < < si n

The left hand side is just the area under this polygon so moving the points
above the polygon down onto it as shown, does not affect this expression.
Since this can only decrease the right hand side we may assume all the pt
are on this polygon. Then the left hand expression can be calculated with
sk k and it becomes
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1 1 ' 1

2
Po + Pi f -•' + Pn-l + ~ Pn — PO + • • • + Pn ~

^
+ P^

— Po + ••• + Pn 7~T (PO + ••• +Pn)
n + 1

since the Newton polygon is convex. But the last expression is just
n

(Po + + p„), hence the lemma.
n + 1

Theorem 4.14. // C c is a smooth curve embedded by T (C, L)
where L is a line bundle of degree d, then

i) d > 2g > 0 => C linearly stable,

ii) d^2g ^0 => C linearly semi-stable.

Combining this result with Theorem 4.13 gives the main theorem of this
section :

Theorem 4.15. If C is a smooth curve ofgenus g ^ 1 embedded by a

complete linear system of degree d > 2g then C is Chow-stable.

Proof of 4.14. Consider all morphisms cp: C-> P" for all n, where

(p (C) <4= hyperplane. Let us plot the locus of pairs (deg (p (C), n), where

cp (C) is counted with multiplicity if cp is not birational. Note that, if cp*@ (1)
is non-special, then by Riemann-Roch on C :

n dim H° (0Fn (1)) - 1 ^ dim H°(cp*(9 (1)) - 1

deg cp*(9{ 1) - g deg cp (C) - g

while if cp*(9 (1) is special, then by Clifford's Theorem on C:

n ^ dim H 0 (cp*(9 (1)) - 1

^ deg<p* (0(1)) _
dtgcp(C)

_ _ _ _



This gives us the diagram

: The reduced degree of cp (C) is just djn, the inverse of the slope of the

joining (0, 0) to the plotted point (/?, d). In case (i), by assumption, the

given curve C1 <r corresponds to a point on the upper bounding
segment, such as * in our picture. Any projection of C corresponds to a

point (n, d') in the shaded area with d' d,n' < n. From the diagram it
M is clear that the slope decreases, or the reduced degree increases: this is

H exactly what linear stability means. In case (ii), we allow the given curve C
j to correspond to the vertex (2g, g) of the boundary, or allow g 0, when

the boundary line is just n d. In these cases, the slope at least cannot
: increase, or the reduced degree cannot decrease under projection.

U Remark. Curves with ordinary double points are not, in general,
; linearly stable since projecting from a double point lowers the degree by 2,

1 but decreases the dimension of the ambient space by only 1. In fact, linear
bi stability is somewhat too strong a condition for most moduli problems:

| Chow stability for varieties of dimension r apparently allows points of
1 multiplicity up to (r+ 1) while linear stability allows only points of multi-
y plicity up to r
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§ 5. The Moduli Space of Stable Curves

Our main result is:

Theorem 5.1. Fix n 2^ 5, and for any curve C ofgenus g let <Pn(C)

a p(2"-!)(£/-i)-i fre image 0f c embedded by a basis of F (C, coc®'j.

Then if C is moduli-stable, <Pn (C) is Chow stable.

In view of the basic results of § 1, and those of [20], this shows:

Corollary 5.2. (F. Knudsen) Jdg is a projective variety.
Recall that C moduli-stable means

(1) C has at worst ordinary double points (by Proposition 3.12, this is

necessary for the asymptotic semi-stability of C) and is connected,

(2) C has no smooth rational components meeting the rest of the curve
in fewer than three points:
this condition is necessary to ensure that C has only finitely many
automorphisms.

We will call C moduli semi-stable if it satisfies (1) and

(2') C has no smooth rational components meeting the rest of the curve
in only one point.

Note that if C is moduli semi-stable, then the set of its smooth rational
components meeting the rest of the curve in exactly 2 points form a finite
set of chains and if each of these is replaced by a point, we get a moduli
stable curve :

Chain II
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It would be more satisfactory to have a direct proof of Theorem 5.1

similar to the proof of the stability of smooth curves given in § 4. But

curves with double points are not usually linearly stable (cf. the remark

following Theorem 4.14) and, in fact, the estimates in Corollary 4.11 do not

suffice to prove stability for such curves. We will therefore take an indirect

approach.

Proof of 5.1. We begin by recalling the useful valuative criterion:

Lemma 5.3. Suppose a reductive group G acts on a k-vector space V.

Let K k ((0) and suppose x e VK is G-stable. Then there is a finite
extension K' k' ((C)) =5 K, and elements g £ GK>, X e (K')"~ such that

the point Xg (x) e V ®k K' lies in V ®k k' [[*']] and specializes as t ^ 0

to a point Xg (x) with closed orbit. Thus Xg (x) is either stable or semi-

stable with a positive dimensional stabilizer.

Proof. The diagram below is defined over k:

P(K) ^P(V)SS

71

X Proj (graded ring of invariants on V)

The point n (x) e XK specializes to a point n (x) e Xk. Let y be a lifting
of this point to Vss with 0G (y) closed. In the scheme V x Spec k [[/]] form
the closure Z of Gm 0G (x). The lemma follows if we prove that y e Z.
If y $ Z, then Z and 0G (y) are closed disjoint G invariant subsets of
V x Spec k [[*]], hence there exists a homogeneous C-invariant/ such that

/(x) 0 but/(y) ^ 0. Then for some n,f®n descends to a section of some

line bundle on X x Spec k [[*]]. But then f(n (x)) 0 and f{% (x)) ^ 0

are contradictory.
Now suppose that C is a moduli stable curve of genus g over k. Let

^/k [[/]] be a family of curves with fibre C0 over t 0 equal to C and

generic fibre Cn smooth. At the double points of C0, # looks formally
like xy tn, that is has only ^„^-type singularities and hence is normal.
Embed Cn in {N= (2/2 — 1 (g~ 1)- 1) by T (Cn œCri®n) and let $ (Cfi
denote its image there. Then Lemma 5.3 says that by replacing k [[?]] with
some finite extension and choosing a suitable basis of T (C,?, coc^®")—this
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corresponds to choosing g, À—we may assume that the closure @ in PN

x Spec k [[t]] of $ (C,,) satisfies

i) A, « Cn

ii) D0 Chow-stable or Chow semi-stable with positive dimensional
stabilizer.

I now claim:

(5.4) Q) 0 (&), the image of under a k [[/]] basis of

r co<enjk[[?]])

In particular this implies D0 C0 C and since C has finite stabilizer
this means D0, hence C, is Chow stable.

The main step in the proof of (5.4) is to show that D0 is moduli semi-

stable as a scheme, and the key difficulty in doing this is to show that D0
has only ordinary double points. At first glance, this seems rather obvious,
since from Proposition 3.12 it follows easily that as a cycle D0 has no
multiplicities and has only ordinary double points. But ordinary double

points on a limit cycle arise in two ways:
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In the second case the scheme D0 has an embedded component (the first

order normal neighbourhood in the z-direction) at the double point so in

the limit scheme the double point is not ordinary. If case (ii) occurred for

D0, then since D0 is Chow semi-stable, it must span P^ set-theoretically.

But T(D0,(9Dq (1)) has a torsion section supported at the double point:

so D0 would have to be embedded by a non-complete linear system ^
a r(D0, <9Dq (1)) of torsion-free sections, dim dim H° (Dv 0DtJ (1)).

Consequently H1 (D0> 0Dq (1)) ^ (0) too. That this cannot happen in the

situation of (5.4) follows from:

Proposition 5.5. Let C c P" be a [-dimensional scheme such that

a) 77 + 1 deg C + % (0C), % {(9C) < 0,

b) C is Chow semi-stable,

deg C 8
c) < -

77 + 1 7

Then i) C is embedded by a complete non-special1) linear system,

ii) C is a moduli semi-stable curve with rational chains of length at most

one consisting of straight lines.

deg C
Moreover if v — —-— (where œc is the Grothendieck dualizing sheaf) and

deg coc

C Q u C2 is a decomposition of C into two sets of components such that

if — C1 n C2 and w # if then

w
iii) I deg Ct ~ v degCl (coc) | ^ -

Remarks. 1) It is clear that D0 satisfies the hypotheses of the lemma.
Indeed a) is satisfied by Dn and is preserved under specialization. The key
point of the Proposition to replace this by the stronger condition i)

2) Roughly, iii) says that the degrees of the components of C are roughly
in proposition to their "natural" degrees. We will see later on that this is

enough to force Q) <.

Proof From b), c) and Proposition 3.1 we know that the cycle of C
has no multiplicity and only ordinary double points. Hence Cred is a scheme

x) Non-special means H1 (C, (pc (1)) — (0).
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having only ordinary double points and differing from C only by embedded

components.
Suppose we are given a decomposition Cred Q u C2; let if =• Ct

n C2, w # Lt be the smallest linear subspace containing Ct and

nt dimL^. We can assume Lx F(Xni + 1 Xn). For the 1-PS A given by

n± + 1

t

n — nx

Y Pi "i + 1

1

the associated ideal in $credxAl 1S given by «/ (/, /(Li)). To evaluate

e (</) we use an easy lemma whose proof is left to the reader

Lemma 5.6. If X' s Ä X is a proper morphism ofr-dimensional, possibly
reducible "varieties", birational on each component, L w a ///?£ bundle on

X, L an zffea/ sheaf on X such that supp (ßxl^) Is proper, then

(/* (•>)) 'V W
Letting be the pullback of to Ci? the lemma says eL (J) eLl {J> f)

+ eL2 Çf2)- But t - 0ciXa. and support e/2 contains (0) x ^ so

this implies1) eL («/) ^ 2 deg Cx + w. Using b) and Theorem 2.8 this gives

deg C 16
(5.7) w + 2 deg C1 ^ — 2 (wj + 1) ^ + 1)

n +1 7

If Cd as any component of Cred, then this implies:

a) H1 (C1? $Cl (1)) 0: if not, then by Clifford's theorem

h\Cu<SCl{ 1)) +

x) This argument has a gap: see Appendix, p. 108.
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so by (5.7)

deg Ct ^
®

h° (Ci, 0Cl (1)) ^ T deg Ct +
®

which implies deg Cx ^ 2, hence Cx is rational and then H1 (Cl5 §Cl (1))

(0) anyway.

b) H1 (Cu(9Cl(\)(-ir)) (0): indeed from (5.7) and Riemann-Roch,

1 8
deg C1 + - w ^ - (deg Cx -g1 + 1), whence

5

deg (9Cl (1) (-IT) deg C1 - w ^ 8 (gx - 1) + - w

The last expression is greater than 2g1 — 2 unless w 0, when b) reduces

to a), or gt 0 and w 1 or 2. But in this case

with ^ 1 — 2 — 1.

Together a) and b) imply 771 (C, $c (1)) 0. In fact, if Cred has

components C(, then there is an exact sequence

0 - © <PCi (1) -^i) ^ <W1) - ^ - 0

where M has 0-dimensional support, hence H1 (Cred, 0cred (1)) 0, and if
Jf is the sheaf of nilpotents in 0C, then Jf has 0-dimensional support and
the conclusion follows from an examination of the exact sequence

0 -» Jf 0C -> $Cred -> 0

Therefore hypothesis (a) can be rewritten n + 1 h° (6 c (1)). Since C
is not contained in a hyperplane, C is embedded by a complete linear
system. But now if Jf (0), then set-theoretically C will still be contained
in a hyperplane, contradicting its Chow semi-stability; so C Cred and
all that we have said about Cred above is true of C.

Using the fact that

1 (@c) - - X (®c) - (deg X (®c))

it follows that deg C/n + 1 — 2v/2v — 1 and we can rewrite (5.7) in terms
of v as

w / 2v \
1 + deg C, ^ I

^ - j (deg Cx-gt +1)

or equivalently

L'Enseignement mathém., t. XXIII, fasc. 1-2. 7



w
V (2g1- 2 +w) - deg CL v degCl (coc) - deg

Then since

0 v (deg (coc)) - deg C

v degCl (<wc) + v degC2 - deg Cj - deg C2,

w
we obtain iii): — ^J

2
vdegCl(coc) - deg Ct

Now suppose C has a smooth rational component C1 meeting the rest
of the curve in w points Pu Pw. Then coc\ C1 is just the sheaf of
differentials on Cx with poles at Pu Pw, so if w ^ 2, degCl (cdc) ^ 0. Using

1

iii) this shows deg C1 ^ - if w 1, absurd, and deg C1 1 if w 2.

Moreover, if, in this last case one of the P1 lies on a smooth rational curve
C2 meeting the rest of C in only 1 other point, as in the diagram below

Ci ^P1

then cor Ci uc 1
and ojr c1

1

again, we find deg (C1 u C2) ^ - 2

C2 so degCl u c2 (cpc) 0. Using iii)

1, and as this is absurd, we have

proved all parts of the Proposition.
We are now ready to show that <3 <ê. Since D0 is moduli semi-stable,

it follows that 3 is a normal two-dimensional scheme with only type An

singularities. Moreover co%njkWn is generated by its sections if n ^ 3 and
defines a morphism from <3 to a scheme 3'jk [[*]], where D'n D,p
Dq D0 with rational chains blown down to points. Thus 3' is a family
of moduli-stable curves over k [[/]] with generic fibre cé>n. Since there is only
one such (cf. [6]), it follows that 3' Thus we have a diagram:
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Cn < —— Dn ^ P* x Spec fc ((f))

n n n

^ + 3 _ > PN x Spec/c [[£]]
^(®pn(1)) — / fc((f)> •

LetL #0 (1). It follows that L &>§^[[t]] —Xi r^i)> where A are ^ie

components of Z>0. Multiplying the isomorphism by tmm(ri), we can assume

rt 0, min rt 0. Let Dx u Z>/9 D2 u Lfi. If / is a local
rf 0 rj> 0

equation of X! then f 0 in any component of since rt 0 on
all these while/(x) 0, all xe^n Z>2, so

# (D1nD2) — degDl ($0o (X/;£>;)) •

But this last degree equals (deg Lfi —n degDl (coDo)) which contradicts iii)
of Proposition 5.5 unless all rt are zero. Hence L co^n which shows

3 * V.

Line bundles on the moduli space

For the remainder of this section we examine Pic (Jtg). We fix a genus
g ^ 2 and an e 3. Then for all stable C, e is very ample and in this
embedding C has degree d 2e (g — 1), the ambient space has dimension
v - 1 where v (2e—l) (g — 1) and C has Hilbert polynomial P (X)

dX - (g — 1). Let H c= Hilbpv-i be the locally closed smooth subscheme
of p-canonical stable curves C, let C c H x pv_1 be the universal curve
and let

ch : H -> Div Divd d

projective space of bihomogeneous forms
of bidegree (d, d) in dual coordinates

u, v (cf. § 1).

be the Chow map. These are related by the diagram

71

Div c-h H f * J(g

If Pic (H, PGL(v)) is the Picard group of invertible sheaves on H with
PGL (v)-action, we have a diagram
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Pic (,ygg) Pic (H,PGL(v))"
„ Pic (H)paL(v) c Pic (H).

In this situation, we have:

Lemma 5.8. In the sequence above, p* is injective with torsion cokernel
and a is an isomorphism.

Proof, a is an isomorphism by Prop. 1.4 [14]; p* injective is easy;
coker p* torsion can be proved, for instance, using Seshadri's construction,
Th. 6.1 [19].
This lemma allows us to examine Pic Jig) by looking inside Pic (h)pgl(v}
which is a much easier group to come to grips with.

Definition 5.9. Let A c= LI be the divisor ofsingular curves, Ô (9H(A)

and Xn Amax (n% (mc//i0w)), (n ^ 1) We write X for Xt.

The sheaves Xn and Ô are the most obviously interesting invertible sheaves

on H from a moduli point of view. The next theorem expresses all of these

in terms just involving X and Ô.

(n)
Theorem 5.10. Xn p

2 0 X where p X12 0 <5_1.

Proof. The proof is based on Grothendieck's relative Riemann-Roch
theorem (see Borel-Serre [4]), which we will briefly recall.

Let X and Y be complete smooth varieties over k, A (X) be the Chow

ring of X and IF be a coherent sheaf on X. Let ci (F) e A (X) denote the
zth Chern class of F, Chern (F) e A (X) 0 Q its Chern character and

F (F) e A (X) 0 Q its Todd genus. These are related by:

cAF)2
(5.11) Chern (F) rk F + c1 (F) H — — c2(F)

+ terms of higher codimension,

Ci (F) c1 (F)2 + c2 (F)
g- (&) i - 2v-V

V y
2 12

+ terms of higher codimension.

Let K Y) be the Grothendieck group of Y, f : X -» Y be a proper map,
and /j (F) — ^ (-\)1 [R\/* F] eK(Y). The relative Riemann-Roch
theorem expresses the Chern character of/, (F), modulo torsion as

Chern (/, fm (Chern & (fl^/y))
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which using (5.11) gives:

(5.12) r/c/j & + c1 (/, #") +
c (J^)2 \

rk{3F)+Cl{^)+-U- c2 (#")).

/ Ci (ß^/y) Cj (flx/y)2 + c2 (Vx/y)
I 2

+
1212

For the time being, we work implicitly modulo torsion.

Now suppose is a line bundle such that Rlf * 0, i > 0 and

suppose dim X dim 7+1. Then the codimension 1 term on the left of

(5.12) (i.e. on 7) corresponds to the codimension two term on the right
(i.e. on X). Since c2 (J^) 0, this gives

(5.13) Cl(/# #1 Cl(fi^)

In case / : C -» S is a moduli-stable curve over S, X C and Y S,

we can simplify this. Indeed I claim that if Sing C is the singular set on C

and 7sing is its ideal, then

i) codim Sing C 2

ii) the canonical homomorphism Qc/S -» coc/s induces an isomorphism
^C/S ^sing ' œc/s-

We certainly have the isomorphism of ii) off Sing C. At a singular point C
has a local equation of the form xy t'\ where Ms a parameter on S,

v and y are affine coordinates on the fibre. Moreover locally C is singular
only at the points (0, 0) in the fibres where t 0, so Sing C has codimension
2. Near the singular point

&c/s (<M* + (9cdy)/(xdy + ydx) ®c

while coc/s is the invertible sheaf generated by the differential which
is given by dx\x outside x 0 and by ~dy/y outside y 0. Thus

Recall the following corollary to Riemann-Roch: if if is a smooth variety,
7 c la subvariety of codim r and is coherent on 7, then considering
as a sheaf on X

/* ci (^x/r)2 + c2 (^X/y) ci (^ ci (&x/Y) CI (^)2
12 2 2

ôc/s ^(0,0),C • C — ^(0,0),c • wc/s •
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0, 1 ^ i r — 1

— I)*"-1 (r — 1) rk 7, i - r

Set X C, Y Sing C and #" £2c/s. The Whitney product formula
applied to the chern classes of the exact sequence

0 QcfS -> CDCIS -> COCjS (g> ^singC 0

gives, taking account of the corollary

1 + Cx ((DC/s)

(1 4-c1 (Qc/s) +c2 (&c/s) + • (1 +0 [Sing C] +

Equating terms of equal codimension, we see that c1 (&c/s) ci (œ) and

c2 (&c/s) [Sing C] so that (5.13) becomes

ci (/*^) \ (cis)2 + [Sing C] ct (#") c1 (coc/s) c1 (J^)2'
+

12 2 2

Applying this to the map n : C -> //, when $F oj^jh gives

K — AmâX(7ij. coc/h) ci(n* œc"n)

ci (coc/h)2 + [Sing C] c1 (coc/h) ci (œc/n) ci (œc/H)
— TT j.

12

n* (ci (®C/H)2) +
n* (ci coc/h)2)+ [d]

12

Setting1) n 1, we see that X
71* (C1 (œC/H)2) + \A~\

12
and 71.,. (cl (®C/h)2

12 2 — [A], Plugging these values back in gives us the theorem up to
torsion. But in fact:

Lemma 5.14. Over C, Pic (//, PGL (v)) is torsion free.

Note that this will prove what we want because the invertible sheaves that
we are trying to show are isomorphic all "live" on the full scheme Hz over
Spec Z of stable ^-canonical curves. If they are isomorphic on Hz, they
are isomorphic after any base change. But on the other hand, I claim that
Pic (H, PGL (v)) injects into Pic (/7C, PGLC (v)):

4 For n \, (u>c/h) is not zero, but it is the trivial line bundle, hence doesn't
affect 7t I.
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If L is a line bundle on 77 with PGL (v) action such that L ® C is trivial
over Hc, then

77°(7/,L)PGL(v) ® C H°(HC,L® C)PGL(v)

8

H°(Ilc,&HC)PaL<v)C

since 7/c/PGL(v) is compact. Thus we can find a non-zero section s

g H° (77, L)pgl(v), which over C can be used to give the trivialization a.

Over C, s has no zeros so the divisor (s)0 of the zeros of 6* on 77, has support
only over the closed fibres of Spec (Z). Mumford and Deligne [6] have

shown that 77 - Spec Z is smooth with irreducible fibres, hence (s)0

Yt-iTi-1 (/?), r£ ^ 0 i.e. (.s')0 (n) for some integer n. Then(-)is aw
global section of L with no zeros so L is trivial.

Proof of Lemma. Over C, we have Teichmüller theory at our disposal.
Let 77 be a standard model of a group with generators { ah bt | 1 ^ z ^ g }

g

mod the relation Y[ W1) 1- Then the Teichmüller modular
i — 1

group r is

r {a|a: 77-»77isan orientation preserving } /inner
isomorphism automorphisms

The Teichmüller space is given by

T̂9 (C,a)
C a smooth curve of genus g and a: n1 (C) -> 77 an
orientation preserving isomorphism given up to inner
automorphism

Fix a model Mg of the real surface of genus g, and identify ni (Mg) and
77. Then F is generated by the maps which are induced by certain
automorphisms of Mg, called Dehn twists. The Dehn twist hy corresponding to
a loop y: [0, 1] -> Mg on Mg is given by taking an e-collar y x [—g, e]
about y, letting h identify off the collar and letting h(y(t),rj-s)

(y (t + — J g — g as shown below.



Up to inner automorphism hy is determined by which of the pictures below
results from cutting open Mg along y. We have name these elements of T
in the diagrams:

The Dehn twist hy can also be described as the monodromy map
obtained by going around a curve C0 with one double point for which y
is the vanishing cycle.

The components of A cz H correspond to the different ways of putting
a stable double point on a smooth moduli stable curve C. They are the
closures of the sets of curves of the forms shown below: again, we name these

components in the diagram:

genus g-I
genus g — 1 genus /

h >r

W er hte r

genus g-I
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(C, a) e «^, 5 a basis of the c-tuple
differentials on C given up to a scalar

Suppose we are given a line bundle L on H with PGL (v)-action such that

Ln (9H. L induces a cyclic covering H' of H plus a lifting of the PGL (v)-

action to H'. If we choose n minimal this covering is not split: we denote

its structure group by PL. Let H' be the pullback of covering over H, and

let ^'g denote the quotient of H' by PGL (v)—this is a covering of PTg.

These coverings are related by

H1

H ' zd H ' — A'

rr

Hzd H - A

H

pr

g
is simply connected so the cover LT'g PTg splits, hence so does Hr

-* H. A section of this last cover gives a map from H to H' — A' (shown
dashed in the diagram), so rL is a quotient of T, of finite order.

Let y' [resp. ye] be a loop at a fixed base point P0 g H — A going around

A' [resp.: A J but homotopic to 0 in H. Fix a point P0e H over P0. The
monodromy characterization of the Dehn twists implies that y' [resp. : ye]

lifted to H goes from P0 to h' (P0) [resp.: to he (P0)]- Since y' [resp.: ye]

are homotopic to 0 in H, and the covering H' — A' extends over H, this
implies that the image of h' [resp. : !i[] in rL is 0. But these elements and their
conjugates generate FL, so fL { 1 }, hence L ^ 0H, proving the lemma
and the theorem.

In order to describe the ample cone on Pic (jTg) we prove:

Theorem 5.15. Ch*(0Div(v)) « (fie ®
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Proof. The proof depends on a result which we simply quote from
Fogarty [8] or Knudsen [12] :

Proposition 5.16. Let S be a locally closed subscheme of a Hilbert
scheme Hilbpv-i, Ch be the associated Chow map Ch: S-+ Div and
Z c Pv x s have relative dimension r over S. Then ifn^ 0, Amaxp2f% (&z(n))

r + 1

(x) pf and Ch* (0Div (1)) jnr+ u where ßi are suitable invertible
i 0

sheaves on S.

In the situation of our theorem, with S H and Z — C, (9c (1) ofcfn
(x) 7i*g where Q is the invertible sheaf determined by (x) Q

n*<9c(X> TT^pv—1(1) &h> hence

(5.17) &H[A 7ts; (tö®^)] ® ôv ® A 0 ßv.

On the other hand,
(neX

Ax(n*&c(n)) ® Q"] /r ® 7. (x) Qp<"> ".

This has leading term in n of /r"2®2/2 ® i)n2 so

Ch*(&Dh(v)) ^2 ®

/rVe2_
^).4e(g— 1 g, A-4e(„-l) usjng (5 n) _

Finally, therefore, Ch* ($Div (v)) ixe2(9~1} ® A~4e(9~1} as required.

Corollary 5.18. If e ^ 5, \f ® X~4 Â12e~4®3~e) is "ample on

JIf\ i.e. those positive powers of this bundle which are pull-backs of bundles

on JIg are ample on Jig.

Proof. This is an immediate consequence of the Theorem and our main
result: that PGL(v)-invariant sections of Ch* (0Div (1)) define a projective
embedding of JIg.

Remark 5.19. A similar argument using the facts that

(1) co®e is base point free for all canonical curves when e ^ 2,

(2) smooth curves are stable if d > 2g,

shows that if e ^ 2, the sections of X12e~4 ® ô~e on JIg separate points
on JIg.

To get a good picture of the ample cone on JIg we need to use the

realization via O functions ség^——^ PN of the moduli scheme ségA of
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principally polarized abelian varieties. More precisely, let J : Jfg -> ség l
be the map taking a curve C to its Jacobian. Then we have:

Theorem 5.20. In characteristic 0, themorphism Jtg

extends to a morphismJ(g —^ so that for some m, 0* (®pn (1)) Xm.

Proof See Arakelov [1] or Knudsen [12].

Remark. This should also hold in characteristic p, but it seems to be

a rather messy problem there.

Putting together 5.18 and 5.20, we get a whole sector in the (<a, Z?)-plane

such that Xh ® ö~a is ample for (a, b) in this sector. This is depicted in the

diagram below:

AMPLENESS
UNSETTLED

11

10

a

1 2

The fact that X and À11 (x) ô 1
are not ample can be seen by examining

the following 2 curves in jfg:
(1) If S{ is a curve in J(g composed of curves of the form:



vary cross ratio of the 4 points
in P1 making up the 2 double points

where Cg_2 is a fixed genus (g — 2) component, then X \ Sl 0S hence
sections of X always collapse such families.

(2) If S2 is a curve in Jtg composed of curves of the form:

E an elliptic curve : vary its

y-invariant

where Cg_l is a fixed genus (g — 1) component, then X11 (x) S~1 | s„ (9S2

i.e. X11 (x) collapses these families.
We omit the details.

APPENDIX

We wish to fill in the gap in the proof of Proposition 5.5 on page 95.

The difficulty occurs if the support of J>, i.e. (0) x Li, contains some of the

components of C2 meeting Cx. In this case, the inequality

<?L i/2) > W

is not clear. Indeed, if Du Dk are the components of C2 meeting Cu
wt # (DinC1), and c/f t is the pull-back of c/2 to Dh then
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eLi/i)
eL i) ^ Wi if ^1 $ Di

2 deg Dt if Lx 2 Dt.

Now suppose C\ is irreducible and Tfi 2 L1. Then (5.7) is modified to:

16
2 deg Dt + 2 deg Cx < — +1)

Since Cx spans L1? nx < deg Q. Substituting this, we find

deg C1 8
deg D{ < —+ -•

hence deg Tfi < deg Ci (except in the lowest case deg C1 1 ; in this

case, Ct is a line, so Cx Lx and SuppJf\- Dt n Lt ^ Dt). Now the

reverse of this inequality cannot be true too. This means that if we apply
the same arguement to

Cred Di u (C— Zfi)

then the linear span M of Dt cannot contain Cv Therefore

16 16
wt + 2 deg Di < — (dim Mt + 1) < - (deg Tfi + 1)

.\ < 2 deg Dt

eL(yTi) > wt in all cases

.-. eL (*f2) > w as required.

This proves (5.7) if C1 is irreducible, hence (a) and (b) that follow are

correct. In particular, (b) shows that 0Cl (1)( —7F) always has sections,
unless Cx is a line and # iV 2. The next paragraph shows that C is

embedded by a complete linear system. So when T {(9Cl (1) (_7^0) # (0),
there is a hyperplane containing all components of C except Cx. Returning
to the general case of (5.7) where Cx is any subset of the components of C,
it follows that the linear span Lx of Cx contains only Cx and the lines Dt
which meet Cx in 2 points. For these, # (DinCi) 2 deg Dh so in all
cases it is true that eL (J^2) > w as required.
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