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is satisfied, where the constant C does not depend on the functions {f"l (1) }.
Since F is a bounded set, there exists a subsequence of suffixes ny, n,, ..
such that for any i =0,1,..,n; k= 1,2,..,m;; j=1,2,..s; the
numerical sequence f’in‘, — C.;.; as v = oo. From this and the previous
inequality it follows that {f’;i,,,v (1) } e F(v=1, 2, ...) is a Cauchy sequence,
because it is known that the sequence f, (x, y) € T (F) is Cauchy sequence.
Consequently there exists an element {f%(z) } € B such that | { /(1)
— fﬁ,,,v ()} HB — 0. Since F is a closed set, { % (¢) } € F. The operator
T: B — C(G) is bounded. Therefore T ({ f% (¢) }) = f(x,y). Consequently
f(x,y)e T (F). This proves the lemma.

The following lemma from the theory of linear operators [28] turns out to
be useful.

LEMMA 4.5.3. Let B, and B, be Banach spaces. If a linear operator
T: B, — B, maps bounded closed sets of B, onto closed sets of B,, then
its domain of values is closed.

Proof of Theorem 4.5.1. The set of superpositions of the form

N
Y. P (X, ) fou (9 (x, ¥)) coincides on G with the set of superpositions of the
m=1 )

form Y Y pi(x, »)f%(gi (x, ). By Lemma 4.5.2 and 4.5.3 the set of the
=0 k=1

2

latter superpositions is closed in the space C (G). This proves the theorem.

§ 6. The set of linear superpositions in the space
of continuous functions is nowhere dense

THEOREM 4.6.1.  For any continuous functions p,, (x, y) and continuously
differentiable functions q,, (x,y) (m=1,2, ..., N) and any region D of the
plane of the variables x,y the set of superpositions of the form

2. P (%, 9) fo (Gm (x, 1)) 5

where {f, (1)} are arbitrary continuous functions, is nowhere dense in the
space of all functions continuous in D with uniform convergence.

By Lemma 4.2.2 we can find a subregion G* < D, determine a constant
y* > 0, and renumber the functions { ¢,, (x, y) }, with two indices so that
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the functions ¢% (x, y) (i =0, 1,2, ..., n;k=1,2, ..., m;; Y. m;= N) obtained 4
i=0

after the renumbering satisfy conditions (1), (2), (3) of Lemma 4.2.2. We
now fix the point (x,, yo) € G* and the number v so that the line (y — y,)
+ v (x—x,) = 0 does not touch at any of the level curves of the functions

g% (x,y) (i=1, 2, ..., n) that pass through (x,, ¥,). Let G¥* < G* be a disc

with centre at (x,, yo) and radius small enough so that the { g% (x, »)}
and gy .4 (x,y) = y + vx satisfy condition (3) of Lemma 4.2.2 with some
set G < G**, determine a constant 4 > 0, and again renumber the func-
tions p,, (x, y) and g, (x, y) (m=1, 2,..., N +1) with two indices so that the
functions p* (x, y) and

n+1

g (x,y) (i=0,1,2,...n+1; k=1,2,..., m; ; Z m; << N +1)

i=0
that is, some functions may be omitted in the renumbering) obtained after
the renumbering satisfy conditions (1)-(3) of Lemma 4.2.2, conditions (4')-

(6") of § 5, and the condition

T Mysy = 1, pyar = Pyar(X,)) = 1, qyer = dneg (X, 9) =y + vx,
Let L be the linear space consisting of all system of functions {f* () }
defined and continuous on the sets { q; (G) } and satisfying the condition

ni-1 m;

> Y pi e nfi(gi(x,y)) =0 in G.

i=0 k=1
LEMMA 4.6.1. L is a finite-dimensional linear space.

Proof. By Lemma 4.5.1, in the sets {q,l (G) } we can select a subset
consisting of a finite number of points { 7, ; } such that, if {f%(¢)}eL
and f% (¢, ;) = 0 for all k, i,/ then f% (#) =0 on g; (G) for all i, k. Thus,
the set of functions { 7% ( t) } is completely determined by a finite set of
parameters { /% (¢;,) }. Consequently the dimension of the space L is
finite. This proves the lemma. ’

LEMMA 4.6.2. There exists a natural number u such that in D the
polynomial (y+vx)* = Q(x,y) is not equal to any superposition of the form
N

> P (5 ¥) fon (@ (x,¥)),  where  {f,, ()} are arbitrary continuous
m=1

functions.
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Proof. We denote by @ the space of functions of the form f(y+vx)

= foer (@ne1 (x, y)) that are representable on G by superpositions of the
N

form [ Y pn (X, ) /o (¢m (x,»))]. Or, what comes to the same thing
m=1

n m;

(see properties (4) and (7)), of the form [ Y Y pf (x, ») f% (45 (x, »)].
=0 k=1
n+1 m;

Thus, functions of @ satisfy the relation Y Y ph(x, ») /% (¢F (x, »)) ==
=1

i=0 K
in G. Consequently the linear space @ is naturally embedded in L. Since L
is finite-dimensional (Lemma 4.6.1), & is also finite-dimensional. Let / be
the dimension of @. Since the polynomials (y+vx), (y +vx)?, ..., (¥ +vx)'*!
are linearly independent, at least one of them Q (x, y) = (y+vx)* is not
equal to any superposition of the form under discussion on G or, conse-
quently, in D. This proves the lemma.

Proof of Theorem 4.6.1. By Lemma 4.6.2 the set of superpositions of the
form given in Theorem 4.6.1 does not exhaust all continuous functions on G.
Consequently, by Theorem 4.5.1, the set of these superpositions is a closed
linear subspace of C (G). Hence we conclude that the set of superpositions
under discussion is nowhere dense in C (G), nor consequently in C (D).
This proves the theorem.

COROLLARY 4.6.1. For any continuous functions p,, (X, X5, ..., X,
and continuously differentiable functions gq,, (x{, x5, ..., x,) (m=1,2, ..., N)
and any region D of the space of the variables (x,, x,, ..., x,) the set of
superpositions of the form

N
Z pm(x17x23""an)fm(qm(xiﬁx27"'ﬂxrx)9 xZ’XS’ 7xn—1)’
m=1

where  { f, (t, X3, X3, ..., X,_1) }  are arbitrary continuous functions of
(n—1) variables, is nowhere dense in the space of all functions continuous in
D with uniform convergence.
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