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Assume that /'€ W generates an extreme ray. If £ ?0(0) = f©@(1) = 0
for all k = 0 we already know by Proposition 2.4 that f is proportional to
sin (nx). Otherwise let n be the smallest number = 0 for which f?”(0) # 0
or £ (1) # 0. By Proposition 2.2 we then have

f(x) = (=D"fC0) A} (x) + (=1)"fE (1) 4,(x) + Rysy (%),

but since f lies on an extreme ray all three terms on the right-hand side lie
on this ray.

If £"(0) # 0 this shows that (—1)"f *"(1)4, and R, ; are proportional
to A¥. Therefore f@"(1) = 0 and R'%¥"® = f£(3*2) i5 proportional to
(AT)P"*2) = 0, so that £®"*2) = 0 and hence R,,; = 0 (cf. Proposition
2.2).

If £ @™ (1) 0 we similarly get f*” (0) = 0 and R,,; = 0. This shows
that f lies on the ray generated by either A7 or 4,.

3. DETERMINATION OF A BASE FOR W

There are several ways of determining a base for . We choose the
following set

B = {fer flf(x) sin (nx)dx = 1}.
8

By Lemma 1.2 (i1) we get for fe B and x, € ]0, 1] that

1 = —1~f(xo) f sin® (nx)dx = ~1—f(xo),
T 0 27

so the functions in B are uniformly bounded by 2x.

It is therefore clear that B is a compact convex base for W.

The extreme points of B are exactly the intersections between B and the
extreme rays of W. We see that 2 sin (nx) € B.

We claim that the following formulas hold, cf. [4]:

o0

| 2
(B AF(x) = p—)
! k

=1

sin (knx)
k2n+ 1

, =0, xe]0, 1] ,

2 2 sin (knx
£ 32 4, = TS Y (=1t —],Zr(n+1 )~, n>0,xe]0,1[.

k=1
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Formula (3.2) follows immediately from (3.1). For n = 0 (3.1) is the
familiar formula
T * sin (k
Tlexy = 3 W& 1
2 k=1 k
Suppose that (3.1) holds for n replaced by n — 1 for some n = 1. Denoting
the right-hand side of (3.1) by f,, we have £, (0) = £, (1) = 0 and

w0

) = — e y sin (k7mx)

Pt an-—l

which is equal to —A,", by the induction hypothesis. It follows by (2.3)
that f, = A, and (3.1) is proved. From (3.1) and (3.2) it follows that
*" 1A, and n*" 1 AF € B. We also get lim n?" 1A, (x) = lim 72" "1 A% (x)

| Advel n— o0

= 2 sin (nx). We have now established the following result:

PROPOSITION 3.1. The set B is a compact convex base for W and the
extreme points of B are 2 sin (nx), n*"TiA% (x), n*"T1A, (x), n = 0,
which form a closed subset of B.

By I} we denote the set of sequences (%)n 0 Of non-negative numbers
such that Z %, < 0.

By the Choquet representation theorem or just by the Krem-Mllman
theorem we get the following, cf. [3]:

THEOREM 3.2. For every fe W there exist a = 0 and sequences
(a,), (B)ell such that

(3.1) f(x) = 2a sin (nx) + ), o,m*" 1A% (%)
n=0
+ Y BATIA); 0<x <.
n=0

The functions in B are uniformly bounded by 2z, and therefore the
series (3.1) is uniformly convergent.

If we differentiate the series in (3.1) two times and change sign we get
the series | |

n? (2a sin (mx) + Y. ope 72" HAE () + Y ﬁ,,HnZ"“A,,(x)),

n=0 n=0
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which also converges uniformly on ]0, I[ because Z Oprq T+ Z B+t

n=0 n=0
< 0.
It follows that the following formula holds:

(3.2) (=D (x) = n** (2a sin (nx) + Y, o, 72T AN (X)

Z ﬁn~l—k7-52n+ 1/111 (X))

for 0 < x < 1, k = 0 and furthermore

(3.3) o =21 fPO0), B = a7 F (=D R (D)
for k=0.

This proves that the sequences («,), (f,) and hence also a are uniquely
determined by f. We have thus shown that B is a simplex. The extreme points
of B form a closed subset of B as remarked in Proposition 3.1 so we can
formulate the following

COROLLARY 3.3. The base B for W is a Bauer simplex.

Whittaker proved in [4] that the series in (3.1) in fact converges uniformly
over arbitrary compact subsets of the complex plane. This also proves that f
can be extended to an entire holomorphic function which we also call f.
For x €10, 1[ and y € R we then have

f+iy) = ¥ FO(x )

k_
hence
2k

Ref (i) = L (=D ) s

which shows that x — Ref (x +iy) belongs to W for all y € R, as sum of the

functions
2k

k g2k ¥
x = (=D f (’0(2?)“'

which all belong to the closed cone W.
This gives a short proof of the recent result of Mugler [2].
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