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§ 2. Estimate of the difference of the integrals of one term
of a superposition along nearby level curves

Let G be a region of the plane of the variables x and y, and ¢, (x, y)
and g, (x, y) continuously differentiable functions satisfying in this region
the following conditions: a) the partial derivatives with respect to x and
with respect to y have modulus of continuity w (J); b) the inequalities

1
0<y< | grad [q;(x, »)]| \; <o (i=1,2)

are satisfied everywhere in G, where y is a constant; c¢) for any point (x, y)
€ G the absolute value of the acute angle formed by the level curves of the
functions ¢, (x, ) and ¢, (x, ) which pass through this point is greater
than some positive constant y.

LEmMMA 4.2.1. Let e:m and 822 be two level curves of the function ¢,
and e;I and 621 level curves of the function ql, [a’ a’l =« G the segment
of the curve e;I with end-points a’ € e;,, and a’ eeqz, [6', b"] the segment
of the curve e, with end-points b’ €e,, and b" € e,,. Then

hy (b, 51) < hy ([’ @) x (1 ¢ () @ (3),
where ¢ = d; ([a', a") v [b',b"]) and c, (y) depends only on 7.
Proof. Since g, (a") — q, (@) = q, (b") — q, (b'), we have

0g, (a*

ACH - dq, (a*)
a——h ([a',a"]) = > hy ([b', b"]), Where»

0s

Consequently,

0q, (b*)

Js

and are the derivatives at the points a* € [@', a"] and b* € [b, b"]

dq, (a*)
0s

along the curves [d’, a"] and [b’, b"], respectively. We show that

an *)

+ O (y) w (6). We denote by ¢; the derivative of g, at the point b*

in the direction of T (ey,, a*) and put o = y { 7 [e,, b*], 1 [e;,, a*] }. From
q, (a *)

S

conditions a) and b) it follows that g5 + O()w (5) and «
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= O (y) w (5). We denote by B, and f, the values of the angles formed by
the vectors t [e:z/p b*] and 7 [e; » @*] with the vector grad [q, (b*)]. We have

0q, (b* :
a3 - -qza(s L= erad [4:6%]] |eos By — cos fy| = O()e
= 0(y) w(9).
Thus,
0q, (a* , 0q, (b*)
L) romoen =2
0s
g, (b™)) 04, (b*) ~
+O(1){ qs — q:( ) +w(5)} = — 263 + OB o) .
Consequently,

, 0q, (a*) (g, (b*)\ ™
hl ([b,—‘ b//]) = h'l ([a’,a”]) qasa < qas >

0q, (b*)\ 71
= hy([a’,a"]) <1+O(y)a)(5)< ﬂ?( )> )

s
= h ([a,a N1 +0 D o B)),
04, (b*)

since by virtue of b) > | grad [gq, (b™)] | sin y. This, proves the

lemma.

LemmA 4.2.2. Let gq,,(x,y) (m=1,2,..., N) be continuously differ-
entiable functions. In any region D we can find a subregion G < D, deter-
mine a constant 7y > 0, and renumber the functions { q, (x,y)} with two
indices so that the functions

qi—‘(x,y) =q,x,y) (=0,1,2,...,n; k=1,2,...,m;; Z m; =N)
i=0

obtained after the renumbering satisfy the following conditions :

(1) when i=0,q;=const in G, and when >0, y<|grad
| 1
[47 (x, ]| < = for every point (x,y) e G;
Y

(2) the functions q'%(x,y) (i>0 fixed, k=1,2, ..., m,) have in the
region G identical sets of level curves, more precisely, in the region G,
g% (x, y) = %! (q,' (x, y)), where ¥ (1) is a strictly monotonic continuously
differentiable function of t:;
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(3) when i # j(i, j#0), then for any k and | the absolute value of the
acute angle formed by the level curves of the functions g (x,y) and g Jl (x, ¥)
which pass through an arbitrary point (x, y) € G is greater than .

Proof. By the continuity of the partial derivatives of the functions
{ ¢ (x, ) } there exists a subregion G* = D inside which for any function
q. (X, y) either grad ¢, (x, y) = 0 or | grad g,, (x, y) | is greater than some
positive constant. From the continuity of the partial derivatives of the
functions { g,, (x, y) } it follows also that there exists a subregion G** <= G*
inside which for any pair of functions ¢, (x, y) and ¢, (x, y) one of two

q”&>}: 0 in G**, or for every point of G**

X,y
the level curves of ¢, (x, y) and ¢, (x, y) that pass through this point intersect

q,,qi> # 0 in G**). From the implicit function

X, V.
theorem it follows that there exists a subregion G < G** in which condi-

tion (2) is satisfied for every pair of functions ¢, (x, y) and ¢, (x, y) with

conditions holds: either D (

at a non-zero angle (D(

gradients different from zero and with determinant D <q,, qs) = Q.
X,y

We now renumber the functions { g,, (x, y) } with two indices in such a
way that only functions constant in G have lower index zero, and the same
lower index is assigned to those functions whose level curves coincide
identically in G. This proves the lemma.

We consider in the region G a superposition of the form ) > p, (x, »)
i=0k=1
f5(q% (x, »)), where {f%(#)} are continuous functions of one variable,

1% (x, ) } are continuous functions satisfying in G the condition ] Ph(x, )

< —and { g% (x, y) } are continuously differentiable functions satisfying in G
Y

conditions (1), (2), (3) of Lemma 4.2.2. Let w (6) be the common modulus of
aqs (x,y) g5 (x,
qi (X, ¥) . %ai S22
0x oy
[a', a"] and [b', b"] be segments of the level curves of the functions { g% (x, ) }
(i>0 fixed) lying in G. Let

o = hy([a’a)); 6 = p([a’,a"], [b,b"])

continuity in G of the functions {pf‘ (x,¥);

g = sup | ;O 121 pi (e 05 (g7 (6, ) |
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m = max sup |£4(d (5, 0) |
i,k
where sup is taken over all points (x, y) € [¢, a"] U [b', b"].

LEMMA 4.2.3. If & is sufficiently small (w (0) < C, (y)), then for any
i >0

| J ZL pi () f% (g5 () ds — Jv i pr ()75 (g5 (s)) ds‘

sela’,a”] se[b’, b” ]
< C5 () (ae + maw (8) + md) ,

where the constants C, (y), C5 (y) depend only on 7.

Proof. By (1), (2), (3) there exists a sufficiently small constant C, (y)
and a sufficiently large constant C; (y) such that if w (6) << C, (y) and for a
point a € [a', a"] the inequalities A, ([¢', al) = C5 (y) 6; hy ([a, a"]) = C;5 ()9
are satisfied, then for any j # i (j>0) the level curve of the function qj-‘
that passes through a intersects [b’, b"] of the level curve of ¢%. Suppose that
o > 2C5 ()0 (if « <2 C5 () 0, then the assertion of the lemma is trivial)

~ o~

and suppose that the segment [a’, a”] of the level curve of ¢f is such that

~ o~ ~

@', d'] = [d,a"] and hy ([, a]) = hy ([d",a"]) = Cs () 6. On the arc

[a’, a"] we fix a system of points ay, a,, ..., a, (a'=a,, a"=a,), uniformly
distributed along the length of this arc, and denote by b, the point of inter-
section of [b’, b"] with the level curve of qf that passes through a, (here
Jj #i should for the time being be regarded as fixed). Using Lemma 4.2.1
we have

J p; ()5 (qj () ds — f p; (9)f5 (4 (5)) ds

Se[al, an] Sé[b’,b”]

- J o ()% (4 () ds — f p5 ()5 (45 (5)) ds

sefay, ay] ‘ selby, byl
+ O (y) mo
= lim l Z p; (a) f5 (45 (a)) hy ([a,, a,41])

- Zl 25 (0 f5 (a5 (b)) hy ([bys byii]) | + O () mo
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= lim | Z pj (Cl )fj (qJ (CI ))h ([ai’ar+1])

V> r=

- Z_ P} (@) £ (a5 @) hy ([a, a,a1]) (140 (3) 0 (5))

+ X (i (@) = i (b)) S5 (a] (@) by ([bys bris]) | + O () mo

= lim | f p; (@) f5 (45 (a) by ([ay, a,41]) O () @ (5)

V=0

+ ‘Zlf'} (45 (@) iy (b1, by44]) O ) @ (8) | + O () mé

= O (y) maw () + O (y) maw(8) + O (y) mé = O (y) m (6 +aw (9)).
Then

T | m;
> i (s)f% (Qf (s))ds — J > pr(s)f% (q'f (s))ds
J k=1 k=1 '

Se[a,, a//] Se[b,, b//]

r noom; noom; ‘
< 2 2 pi(9)fi(gi () ds — J W ACHICHOILS
se[.il’,fl"]l_Ok_l se[b',b”]l_ =l
mJ mj

+ 3 | TEOREOs - | Y A0s@e)es

[ #i k= -

7z sefa’,a”] : Se[b'ab”]k 1
< Cy(y) ae + n(max m)) Cs(y) m (6 +aw(0))

j#i

< Ca (y) (e + md + maw (9)) .

This proves the lemma.

§ 3. Deletion of dependent terms

On a bounded closed set D we consider the space of linear superpositions

of the form ) p.(x,»)fi(q(x,»), (x,y)e D. Here the functions
k=1

{ pr (x, ) } and ¢ (x, y) are continuous and fixed, and { f; (¢) } are arbitrary
continuous functions of one variable. We assume that the function g (x, y)
is such that for any sequence t,e¢q (D) — teq (D) we have p[e(q,t,)
N D,e(q,t)n D] - 0. We put

/,{(tpquﬂpl""vpm) = inf sup l Z Ckpk(xﬁy),D

{ck} (x,y)ee(q,t)nD k=1
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