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3. Let F"fC be the class of real valued functions on the cube { - 1

< xk < 1 } (k= 1, n), bounded in modulus on that cube by the constant

sk and such that their analytic extensions are entire functions of order sk

with respect to zk xk + iyk (k= 1, n). Then
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These estimates and other results connected with estimates of entropy
and applications are to be found for example in [49]-[53].

§ 2. The entropy of the space of smooth functions

Here we give an estimate of the entropy of the class of S times
differentiate functions of n variables. The lower estimate was obtained in [4],
the upper one—in [23].

We fix integers n > 1 and p > 0 and numbers 0 < a < 1, L > 0,

C > 0, p > 0. We will denote by J the cube 0 < xt < p (i 1, n) and

by F FpsfL c (S^p + ot) the set of all real valued functions defined on
such that their partial derivatives of order p satisfy the condition Lip a

with the constant L and

£|/ci +... + kj /(0)

dklxl
< c (X fc; < p)

We say that the function g (x) satisfies the condition Lip a with the constant
L if for any x'and x"

I d (x')- g(x")I< x"))*,
where r (x',x")isthe distance between and

Theorem 2.2.1. If e > 0 is sufficiently small then

/ [\" Is /L\"/sApn[-) < He(F) < Bp'1
S J \ 8y

where A and B are positive constants depending only on s and n.



We choose <5 > 0 such that the number pjb is an integer. We divide

the cube J into cubes Pt 1, 2, ^ by hyperplanes, parallel

to its (n— l)-dimensional edges. Each of the cubes Pt has side of length
b, and the edges of these cubes are parallel to those on </. Let Ct denote
the centre of the cube Pt and St the «-dimensional closed sphere (inscribed

in Pt) of radius <5/2 and centre at the point Cf. Put

<Pi&) <Pi(xi,x2,

0, if x g J — St

A( 1+cos fy r (Ct,x)Yj if xeSi9

where r (Ch x) is the distance from the point x to the centre Ct of the sphere

St. Put, further,
h

%U12 «W Z
i= 1

^tj.= ±1 ; i1,2,h j
Lemma 2.2.1. fLc can find a positive number A (s, L, «), such that when

A A (s, L, «) given any set of numbers (z 1, 2, h)-the
corresponding function (pnim ^ (x) belongs to F.

Proof. By differentiating <pf (x) it is not difficult to see that inside the

sphere its partial derivatives of all orders exist. And the modulus of any
partial derivative of order k is bounded inside St by AB (s, k, n) b~k,

where B (s, k, n) is some constant, depending only on s9 k, n. In particular,
any derivative of the function cpt (x) of order p + 1 is bounded in the sphere

St by the constant

* rifw-p-i A(s, L,n)B(s,p + l,n)
AB (s, p + l,n) ô p-r—

Let g (x) be any p-th order partial derivative of the functions cpt (x). We
take two points a and b belonging to the sphere St. Then g (b) — g (a)

dg (c) dg (c)
r (a, b) where is the derivative of g (x) along the direction

dr dr
(a, b), taken at some point c of [a, b]. Since any p + 1-th order partial
derivative of cpt (x) is bounded inside the sphere by the constant

A (s, L, n) B (s, p-hU n)
we have

Sg (çX

dr

A (s, L, n)B(s,p + 1, n)
n
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And then
dg (c) A (s, L,

I 9 (b) - g (a) | < p —— < pn
A {s, L, n) B(s,p+ l,n)

dr

< panA (5, L, ri) B (s, p + 1, n).
Put

L
A (s, L, /?)

2nB(s, p + l,ri)
Then

I g (b) - fif'(ö)

Now let ¥ (x) be any of the p-th partial derivatives of the function

(Prn,ri2,.-.,tih (*)• We c^oose two points x' and x" of J fix'e St, x" e Sfi
and let g1 (x) and g2 (x) be the partial derivatives of the same kind as

¥ (x) of the functions (pt (x) and (pj (x) (respectively). It is easy to verify
that gl (x) and g2 (x) are continuous on J> and identically equal to zero
on the sets J> — St and J — Sj (respectively). We select some point x0
belonging to the boundary of the sphere St and lying on the segment [xf, x"].
Then

I 00 - (%') I < i g 1 CO - gi CO I + I g2 CO ~ Qi (O I

< I g 1 CO -- g I (O I + I g2 CO - g2 (x0) | < | g (b) - g (a) |

If one of the points x', x" (or both) belongs to the set J — Si9 then we

Lemma 2.2.2. There exists a positive constant A, depending only on
s, L, n such that for sufficiently small s

Proof We choose some positive number k > 1 such that when

< \ L(r CO x0))a + i L (r (x", x0))a < L (r CO x"))a

h

can prove similarly that

I CO - <P (*')I < x")f
Q.E.D.
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We choose two different functions of the type and

(Px1,r2,...,th (A")> ^ A (ß9L, ri)ös and A(s,L,ri) is taken so small that
both functions belong to the family F. Since the functions we have chosen

are assumed to be different, for some i t-l ^ r^. And therefore

I

...,1h
~~ ^Ti,T2,...,T(ci) I

2A 2A (s, L, n) <5S 2/ce > 2e

Hence
n n

fp\n /A(s,L,n)\* 11~
if8(F)> log 2* (Ç) V P

Q.E.D.

<5 / \ k \ s

Lemma 2.2.3. There exists a constant B > 0 such that for sufficiently
small s > 0

11

He(F)<Bp"T

Proof. Let us choose some <5 > 0 such that the ratio p/S is an integer.
In the cube J consider the uniform lattice with step 5, consisting of the

points dt (i — 1, 2, h; h -f 1^ ^

We shall assume the corners of the lattice to be numbered so that the

point dl coincides with the origin of co-ordinates, and for any i

r (dt-:l, d) ô

We now choose some function/ (x) of the family F and we shall show a

method of constructing a table for this function the volume of which is less

/ l\"/s
than Bp11 l-\

Let hp denote the number of different kinds of partial derivative (of all
orders up to and including the 77-th) of a function of n variables. It is not
difficult to verify that hp < (p+ l)n. Let { r{'fe } (T{'fe 0, 1) be the coefficients

of the binary representation of the numbers

dki+k2+"+knf(dl)
dx^dx1^2 ...dxkf

(l<i +/c2 + + kn) < p

written in some order (k is the order of the derivative, j 1, 2, ...,/zi).
Then the numbers
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(k i + k2 + •. • +k„ — /c)

are represented in the table to an accuracy of (5s k, i.e.

binary digits Ti'k / 1, 2, /zf) are sufficient to represent them in binary.

Thus, to represent all partial derivatives of /(x) at the point x dA in

binary we need

Let us assume now that we have found a method for selecting the digits

{ x\,k } (i 1, 2, q- 1) together with a rule for calculating from these

digits the values of the numbers

(I 1, 2, q — 1) to an accuracy of <5s-/c (/< 0, 1, We examine the

subsequent procedure for constructing the table for / (x). Let gk (x) be one

of the /c-th order partial derivatives of / (x). According to the induction
hypothesis, the values of all partial derivatives of order m < p — k of
gk (x) at the point x dq_1 can be calculated to an accuracy of 3s~k~m

(m 0, 1, p — k) from that part of the table already constructed. From
Lagrange's formula, the value of gk (dq) is found sufficiently accurately
from the approximate values of the derivatives of g (x) at dq_l. Therefore,
to represent the numbers gk (dq) to an accuracy of 3s ~k we need only a small
number of binary digits. Since r(dq_l,dq) 3 all the corresponding
coordinates (except one) of the points dq_x, dq are equal. For definiteness,
we shall suppose that

*i (d„) JCi + <5 and xt(dq)

for / 2, 3, n. Then

binary digits
TÏk(j =1,2, /c =0,1,2

p — m — 1

ômgk{dq-ù <5

9k (dc) I dxT
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+
1 S'-kgL(dq.l+eô)

(p — 1) dx[~k

p~k ôm L
_ y g 1/ n c s - k

m=odxT'ml (p — 1)

dm9k(da-i)
where 0 < 0<1. But since — is given by the table only to an

dx\

accuracy of §s~k~m {m — 0, 1, p — k) gk (dq) is determined by the
constructed part of the table only to an accuracy of

P- 1 sm r ss-k ' p-k i r \

Z + —— 5»-* z — + -( —)<e(L + iy-k
m o m! (p — /<) \fI1 0 m (p - k) /

Therefore, in order to represent the value ofgk (dq) in the table to an accuracy
of <5s-fc, it is sufficient to put another hJqk [log ((L +1) e)\ + 1 binary
digits in the table. Hence, to determine the values of all k th order partial
derivatives of /(x) it is sufficient to add hkq < (k + 1)* hJq,k binary digits
to the table (k 0, 1, ...,/?). Thus, the approximate representation of the
values of all partial derivatives of the functions /(x) at the point will use

only

K Z K<(p+ D"+1 (1 +log [e + 1)])
k — 0

binary digits.
The volume of the table T which we have constructed is equal to

* / c \
P(T) « £ V<(p + 1)B+M 1 + log —

+ (h-l)(p + l)" + i (1+log [e (L + 1)]).

We shall now describe the rule we use to enable us to compute the value
of /(x) at any point of the cube J from the parameters of the table. To
do this, we divide the cube J in some way into sets coq (coq 3 dq) the diameter

h

of each set not exceeding ô y/n, and such that ^ /. The approximate
q=l

value of the function/(x) is calculated using the parameters Tjq,k of T in the

following way.
Let x g mq. Then, for the approximate value of /(x) we take

/<*> - s «.,«= n
k\ +/C2 + + kn^p i 1 Ki -
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where akltk, knisthe approximate value (to an accuracy of ô*~k,

ßki + k2+-. +*,)of partial derivative Since e

I f{x)-f * (jc) I < <5S ((p +1 )m + L+1) 0s e'

Therefore,

HAFX (P+1)" + 1 (3+logT) +('i-l)(P + l)" + 1 (1+log (e(L + 1))).

We now define ô in the form

,> V"\B(s,L, n))

We choose k <1 so that the ratio p/ö is an integer. Then

HAH HAF) (p(5+logE)

+ (ft-l)Gp + l)*+1(l+log + 1)))

/f\n/s
i.e. for sufficiently small e Hz (.F) > Bp" | - j where B > 0 is a constant

which can be taken to depend on s, L, n only.

Q.E.D.

Proof of the Theorem 2.2.1. First let L 1. Then from lemmas 2.2.2.
and 2.2.3 we have

/T\,,/s / lV/g
-V(-)

where and B are positive constant, depending only on s and n, since in
this case L 1. But since

He(Fs,i,c) - H8(F)
L L

for sufficiently small 8

L\n,s /'L\n/S
A (s, n) p" - j < He (F) < £ (5, n) pn i- j

Q.E.D.
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