

**Zeitschrift:** L'Enseignement Mathématique  
**Herausgeber:** Commission Internationale de l'Enseignement Mathématique  
**Band:** 23 (1977)  
**Heft:** 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

**Artikel:** ON REPRESENTATION OF FUNCTIONS BY MEANS OF SUPERPOSITIONS AND RELATED TOPICS

**Autor:** Vitushkin, A. G.

**Kapitel:** §2. The entropy of the space of smooth functions

**DOI:** <https://doi.org/10.5169/seals-48931>

#### **Nutzungsbedingungen**

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

#### **Terms of use**

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 09.02.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

$$H_\varepsilon(F_{\rho_1, \rho_2, \dots, \rho_n}^c) = \frac{1}{(n+1)!} \prod_{k=1}^n \frac{1}{\log \rho_k} \left( \log \frac{c}{\varepsilon} \right)^{n+1} + O \left[ \left( \log \frac{c}{\varepsilon} \right)^n \log \log \frac{c}{\varepsilon} \right].$$

3. Let  $F_{s, c}^n$  be the class of real valued functions on the cube  $\{ -1 \leq x_k \leq 1 \}$  ( $k = 1, \dots, n$ ), bounded in modulus on that cube by the constant  $s_k$  and such that their analytic extensions are entire functions of order  $s_k$  with respect to  $z_k = x_k + iy_k$  ( $k = 1, \dots, n$ ). Then

$$\begin{aligned} H_\varepsilon(F_{s, c}^n) &= \frac{1}{(n+1)!} \prod_{k=1}^n s_k \left( \log \frac{c}{\varepsilon} \right)^{n+1} \left( \log \log \frac{c}{\varepsilon} \right)^{-n} + \\ &= O \left[ \left( \log \frac{c}{\varepsilon} \right)^{n+1} \left( \log \log \frac{c}{\varepsilon} \right)^{-n-1} \right]. \end{aligned}$$

These estimates and other results connected with estimates of entropy and applications are to be found for example in [49]-[53].

## § 2. The entropy of the space of smooth functions

Here we give an estimate of the entropy of the class of  $S$  times differentiable functions of  $n$  variables. The lower estimate was obtained in [4], the upper one—in [23].

We fix integers  $n \geq 1$  and  $p \geq 0$  and numbers  $0 \leq \alpha \leq 1$ ,  $L > 0$ ,  $C > 0$ ,  $\rho > 0$ . We will denote by  $\mathcal{I}$  the cube  $0 \leq x_i \leq \rho$  ( $i = 1, \dots, n$ ) and by  $F = F_{S, L, c}^p$  ( $S = p + \alpha$ ) the set of all real valued functions defined on  $\mathcal{I}$  such that their partial derivatives of order  $p$  satisfy the condition  $\text{Lip } \alpha$  with the constant  $L$  and

$$\left| \frac{\partial^{k_1 + \dots + k_n} f(0)}{\partial^{k_1} x_1 \dots \partial^{k_n} x_n} \right| \leq c \left( \sum_{i=1}^n k_i \right) \leq p$$

We say that the function  $g(x)$  satisfies the condition  $\text{Lip } \alpha$  with the constant  $L$  if for any  $x'$  and  $x''$

$$|g(x') - g(x'')| \leq L(r(x', x''))^\alpha,$$

where  $r(x', x'')$  is the distance between  $x'$  and  $x''$ .

**THEOREM 2.2.1.** *If  $\varepsilon > 0$  is sufficiently small then*

$$A \rho^n \left( \frac{L}{\varepsilon} \right)^{n/s} \leq H_\varepsilon(F) \leq B \rho^n \left( \frac{L}{\varepsilon} \right)^{n/s},$$

where  $A$  and  $B$  are positive constants depending only on  $s$  and  $n$ .

We choose  $\delta > 0$  such that the number  $\rho/\delta$  is an integer. We divide the cube  $\mathcal{I}$  into  $\left(\frac{\rho}{\delta}\right)^n$  cubes  $P_i$  ( $i = 1, 2, \dots, \left(\frac{\rho}{\delta}\right)^n$ ) by hyperplanes, parallel to its  $(n-1)$ -dimensional edges. Each of the cubes  $P_i$  has side of length  $\delta$ , and the edges of these cubes are parallel to those on  $\mathcal{I}$ . Let  $C_i$  denote the centre of the cube  $P_i$  and  $S_i$  the  $n$ -dimensional closed sphere (inscribed in  $P_i$ ) of radius  $\delta/2$  and centre at the point  $C_i$ . Put

$$\varphi_i(x) = \varphi_i(x_1, x_2, \dots, x_n) = \begin{cases} 0, & \text{if } x \in \mathcal{I} - S_i \\ A \left(1 + \cos\left(\frac{2\pi}{\delta} r(C_i, x)\right)\right)^p & \text{if } x \in S_i, \end{cases}$$

where  $r(C_i, x)$  is the distance from the point  $x$  to the centre  $C_i$  of the sphere  $S_i$ . Put, further,

$$\varphi_{\eta_1, \eta_2, \dots, \eta_h}(x) = \sum_{i=1}^h \eta_i \varphi_i(x)$$

$$\left( \eta_i = \pm 1; i = 1, 2, \dots, h; h = \left(\frac{\rho}{\delta}\right)^n \right).$$

LEMMA 2.2.1. *We can find a positive number  $A(s, L, n)$ , such that when  $A = A(s, L, n) \delta^s$  and given any set of numbers  $\eta_i$  ( $i = 1, 2, \dots, h$ )-the corresponding function  $\varphi_{\eta_1, \eta_2, \dots, \eta_h}(x)$  belongs to  $F$ .*

*Proof.* By differentiating  $\varphi_i(x)$  it is not difficult to see that inside the sphere  $S_i$  its partial derivatives of all orders exist. And the modulus of any partial derivative of order  $k$  is bounded inside  $S_i$  by  $AB(s, k, n) \delta^{-k}$ , where  $B(s, k, n)$  is some constant, depending only on  $s, k, n$ . In particular, any derivative of the function  $\varphi_i(x)$  of order  $p+1$  is bounded in the sphere  $S_i$  by the constant

$$AB(s, p+1, n) \delta^{-p-1} = \frac{A(s, L, n) B(s, p+1, n)}{\delta^{1-\alpha}}.$$

Let  $g(x)$  be any  $p$ -th order partial derivative of the functions  $\varphi_i(x)$ . We take two points  $a$  and  $b$  belonging to the sphere  $S_i$ . Then  $g(b) - g(a) = r(a, b) \frac{\partial g(c)}{\partial r}$ , where  $\frac{\partial g(c)}{\partial r}$  is the derivative of  $g(x)$  along the direction  $(a, b)$ , taken at some point  $c$  of  $[a, b]$ . Since any  $p+1$ -th order partial derivative of  $\varphi_i(x)$  is bounded inside the sphere by the constant

$$\frac{A(s, L, n) B(s, p+1, n)}{\delta^{1-\alpha}}, \text{ we have } \left| \frac{\partial g(c)}{\partial r} \right| \leq n \frac{A(s, L, n) B(s, p+1, n)}{\delta^{1-\alpha}}$$

And then

$$\begin{aligned} |g(b) - g(a)| &\leq \left| \rho \frac{\partial g(c)}{\partial r} \right| \leq \rho n \frac{A(s, L, n) B(s, p+1, n)}{\delta^{1-\alpha}} \\ &\leq \rho^\alpha n A(s, L, n) B(s, p+1, n). \end{aligned}$$

Put

$$A(s, L, n) = \frac{L}{2n B(s, p+1, n)}.$$

Then

$$|g(b) - g(a)| \leq \frac{1}{2} L \rho^\alpha.$$

Now let  $\Psi(x)$  be any of the  $p$ -th partial derivatives of the function  $\varphi_{\eta_1, \eta_2, \dots, \eta_h}(x)$ . We choose two points  $x'$  and  $x''$  of  $\mathcal{I}$  ( $x' \in S_i$ ,  $x'' \in S_j$ ) and let  $g_1(x)$  and  $g_2(x)$  be the partial derivatives of the same kind as  $\Psi(x)$  of the functions  $\varphi_i(x)$  and  $\varphi_j(x)$  (respectively). It is easy to verify that  $g_1(x)$  and  $g_2(x)$  are continuous on  $\mathcal{I}$  and identically equal to zero on the sets  $\mathcal{I} - S_i$  and  $\mathcal{I} - S_j$  (respectively). We select some point  $x_0$  belonging to the boundary of the sphere  $S_i$  and lying on the segment  $[x', x'']$ . Then

$$\begin{aligned} |\psi(x'') - \psi(x')| &\leq |g_1(x'') - g_1(x')| + |g_2(x'') - g_2(x')| \\ &\leq |g_1(x') - g_1(x_0)| + |g_2(x'') - g_2(x_0)| \leq |g(b) - g(a)| \\ &\leq \frac{1}{2} L(r(x', x_0))^\alpha + \frac{1}{2} L(r(x'', x_0))^\alpha \leq L(r(x', x''))^\alpha. \end{aligned}$$

If one of the points  $x'$ ,  $x''$  (or both) belongs to the set  $\mathcal{I} - \sum_{i=1}^h S_i$ , then we can prove similarly that

$$|\varphi(x'') - \varphi(x')| \leq L(r(x', x''))^\alpha.$$

Q.E.D.

LEMMA 2.2.2. *There exists a positive constant  $A$ , depending only on  $s, L, n$  such that for sufficiently small  $\varepsilon$*

$$H_\varepsilon(F) \geq A \rho^n \left( \frac{1}{\varepsilon} \right)^{n/s}.$$

*Proof.* We choose some positive number  $k > 1$  such that when  $\delta = \left( \frac{k\varepsilon}{A(s, L, n)} \right)^{1/s}$  is an integer.

We choose two different functions of the type  $\varphi_{\eta_1, \dots, \eta_h}(x)$  and  $\varphi_{\tau_1, \tau_2, \dots, \tau_h}(x)$ ,  $A = A(s, L, n) \delta^s$  and  $A(s, L, n)$  is taken so small that both functions belong to the family  $F$ . Since the functions we have chosen are assumed to be different, for some  $i$   $\tau_i \neq \eta_i$ . And therefore

$$|\varphi_{\eta_1, \eta_2, \dots, \eta_h}(c_i) - \varphi_{\tau_1, \tau_2, \dots, \tau_h}(c_i)| = 2A = 2A(s, L, n) \delta^s = 2k\varepsilon > 2\varepsilon.$$

Hence

$$H_\varepsilon(F) \geq \log 2^h = \left(\frac{\rho}{\delta}\right)^n = \left(\frac{A(s, L, n)}{k}\right)^{\frac{n}{s}} \rho^n \left(\frac{1}{\varepsilon}\right)^{\frac{n}{s}}$$

Q.E.D.

LEMMA 2.2.3. *There exists a constant  $B > 0$  such that for sufficiently small  $\varepsilon > 0$*

$$H_\varepsilon(F) \leq B\rho^n \left(\frac{1}{\varepsilon}\right)^{\frac{n}{s}}$$

*Proof.* Let us choose some  $\delta > 0$  such that the ratio  $\rho/\delta$  is an integer. In the cube  $\mathcal{I}$  consider the uniform lattice with step  $\delta$ , consisting of the points  $d_i (i = 1, 2, \dots, h; h = \left(\frac{\rho}{\delta} + 1\right)^n)$ .

We shall assume the corners of the lattice to be numbered so that the point  $d_1$  coincides with the origin of co-ordinates, and for any  $i$

$$r(d_{i-1}, d) = \delta.$$

We now choose some function  $f(x)$  of the family  $F$  and we shall show a method of constructing a table for this function the volume of which is less than  $B\rho^n \left(\frac{1}{\varepsilon}\right)^{n/s}$ .

Let  $h_p$  denote the number of different kinds of partial derivative (of all orders up to and including the  $p$ -th) of a function of  $n$  variables. It is not difficult to verify that  $h_p \leq (p+1)^n$ . Let  $\{\tau_1^{j,k}\}$  ( $\tau_1^{j,k} = 0, 1$ ) be the coefficients of the binary representation of the numbers

$$\frac{\partial^{k_1+k_2+\dots+k_n} f(d_1)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_n^{k_n}} \quad (k_1 + k_2 + \dots + k_n) \leq p$$

written in some order ( $k$  is the order of the derivative,  $j = 1, 2, \dots, h_1^k$ ). Then the numbers

$$\left\{ \frac{\partial^{k_1+k_2+\dots+k_n} f(d_1)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_n^{k_n}} \right\} \quad (k_1 + k_2 + \dots + k_n = k)$$

are represented in the table to an accuracy of  $\delta^{s-k}$ , i.e.

$$h_1^k \leq \left( \left[ \log \frac{c}{\delta^{s-k}} \right] + 1 \right) (k+1)^n$$

binary digits  $\tau_1^{s,k}$  ( $j = 1, 2, \dots, h_1^k$ ) are sufficient to represent them in binary. Thus, to represent all partial derivatives of  $f(x)$  at the point  $x = d_1$  in binary we need

$$h_1 = \sum_{k=0}^p h_1^k \leq (p+1)^{n+1} \left( 1 + \log \frac{c}{\delta^s} \right)$$

binary digits

$$\tau_1^{j,k} \quad (j = 1, 2, \dots, h_1^k, \quad k = 0, 1, 2, \dots, p).$$

Let us assume now that we have found a method for selecting the digits  $\{\tau_1^{j,k}\}$  ( $i = 1, 2, \dots, q-1$ ) together with a rule for calculating from these digits the values of the numbers

$$\left\{ \frac{\partial^{k_1+k_2+\dots+k_n} f(d_i)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_n^{k_n}} \right\} \quad (k_1 + k_2 + \dots + k_n = k)$$

( $i = 1, 2, \dots, q-1$ ) to an accuracy of  $\delta^{s-k}$  ( $k = 0, 1, \dots, p$ ). We examine the subsequent procedure for constructing the table for  $f(x)$ . Let  $g_k(x)$  be one of the  $k$ -th order partial derivatives of  $f(x)$ . According to the induction hypothesis, the values of all partial derivatives of order  $m \leq p-k$  of  $g_k(x)$  at the point  $x = d_{q-1}$  can be calculated to an accuracy of  $\delta^{s-k-m}$  ( $m = 0, 1, \dots, p-k$ ) from that part of the table already constructed. From Lagrange's formula, the value of  $g_k(d_q)$  is found sufficiently accurately from the approximate values of the derivatives of  $g(x)$  at  $d_{q-1}$ . Therefore, to represent the numbers  $g_k(d_q)$  to an accuracy of  $\delta^{s-k}$  we need only a small number of binary digits. Since  $r(d_{q-1}, d_q) = \delta$  all the corresponding coordinates (except one) of the points  $d_{q-1}, d_q$  are equal. For definiteness, we shall suppose that

$$x_1(d_q) = x_1(d_{q-1}) + \delta \quad \text{and} \quad x_i(d_q) = x_i(d_{q-1})$$

for  $i = 2, 3, \dots, n$ . Then

$$g_k(d_q) = \sum_{m=0}^{p-m-1} \frac{\partial^m g_k(d_{q-1})}{\partial x_1^m} \cdot \frac{\delta^m}{m!}$$

$$\begin{aligned}
 & + \frac{1}{(p-1)!} \frac{\partial^{p-k} g_k(d_{q-1} + \theta\delta)}{\partial x_1^{p-k}} \delta^{p-k} \\
 & = \sum_{m=0}^{p-k} \frac{\partial^m g_k(d_{q-1})}{\partial x_1^m} \cdot \frac{\delta^m}{m!} + \frac{L}{(p-1)!} \theta \delta^{s-k},
 \end{aligned}$$

where  $0 \leq \theta \leq 1$ . But since  $\frac{\partial^m g_k(d_{q-1})}{\partial x_1^m}$  is given by the table only to an accuracy of  $\delta^{s-k-m}$  ( $m=0, 1, \dots, p-k$ )  $g_k(d_q)$  is determined by the constructed part of the table only to an accuracy of

$$\sum_{m=0}^{p-1} \delta^{s-k-m} \frac{\delta^m}{m!} + \frac{L \delta^{s-k}}{(p-k)!} = \delta^{s-k} \left( \sum_{m=0}^{p-k} \frac{1}{m!} + \frac{L}{(p-k)!} \right) \leq e(L+1)^{s-k}$$

Therefore, in order to represent the value of  $g_k(d_q)$  in the table to an accuracy of  $\delta^{s-k}$ , it is sufficient to put another  $h_q^{j,k} = [\log((L+1)e)] + 1$  binary digits in the table. Hence, to determine the values of all  $k$  th order partial derivatives of  $f(x)$  it is sufficient to add  $h_q^k \leq (k+1)^n h_q^{j,k}$  binary digits to the table ( $k=0, 1, \dots, p$ ). Thus, the approximate representation of the values of all partial derivatives of the functions  $f(x)$  at the point will use only

$$h_q = \sum_{k=0}^p h_q^k \leq (p+1)^{n+1} (1 + \log [e(L+1)])$$

binary digits.

The volume of the table  $T$  which we have constructed is equal to

$$\begin{aligned}
 P(T) & = \sum_{q=1}^k h_q \leq (p+1)^{n+1} \left( 1 + \log \frac{c}{\delta^s} \right) \\
 & + (h-1)(p+1)^{n+1} (1 + \log [e(L+1)]).
 \end{aligned}$$

We shall now describe the rule we use to enable us to compute the value of  $f(x)$  at any point of the cube  $\mathcal{I}$  from the parameters of the table. To do this, we divide the cube  $\mathcal{I}$  in some way into sets  $\omega_q$  ( $\omega_q \ni d_q$ ) the diameter of each set not exceeding  $\delta \sqrt{n}$ , and such that  $\sum_{q=1}^h \omega_q = \mathcal{I}$ . The approximate value of the function  $f(x)$  is calculated using the parameters  $\tau_q^{j,k}$  of  $T$  in the following way.

Let  $x \in \omega_q$ . Then, for the approximate value of  $f(x)$  we take

$$f^*(x) = \sum_{k_1+k_2+\dots+k_n \leq p} a_{k_1, k_2, \dots, k_n} \prod_{i=1}^n \frac{(x_i - x_i(d_q))^{k_i}}{k_i!}$$

where  $a_{k_1, k_2, \dots, k_n}$  is the approximate value (to an accuracy of  $\delta^{s-k}$ ,  $k = \sum_{i=1}^n k_i$ ) of partial derivative  $\frac{\partial^{k_1+k_2+\dots+k_n} f(d_q)}{\partial x_1^{k_1} \partial x_2^{k_2} \dots \partial x_n^{k_n}}$ . Since  $f(x) \in F$

$$\|f(x) - f^*(x)\| \leq \delta^s ((p+1)^m + L + 1) = B(s, L, n) \delta^s = \varepsilon'.$$

Therefore,

$$H_{\varepsilon'}(F) \leq (p+1)^{n+1} \left( 1 + \log \frac{c}{\delta^s} \right) + (h-1)(p+1)^{n+1} (1 + \log (e(L+1))).$$

We now define  $\delta$  in the form

$$\delta = \left( \frac{k\varepsilon}{B(s, L, n)} \right)^{1/s}$$

We choose  $k < 1$  so that the ratio  $\rho/\delta$  is an integer. Then

$$\begin{aligned} H_\varepsilon(F) &\leq H_{\varepsilon'}(F) \leq (p+1)^{n+1} \left( 1 + \log \frac{c}{\delta^s} \right) \\ &\quad + (h-1)(p+1)^{n+1} (1 + \log (e(L+1))), \end{aligned}$$

i.e. for sufficiently small  $\varepsilon$   $H_\varepsilon(F) \geq B\rho^n \left( \frac{1}{\varepsilon} \right)^{n/s}$ , where  $B > 0$  is a constant which can be taken to depend on  $s, L, n$  only.

Q.E.D.

*Proof of the Theorem 2.2.1.* First let  $L = 1$ . Then from lemmas 2.2.2. and 2.2.3 we have

$$A\rho^n \left( \frac{1}{\varepsilon} \right)^{n/s} \leq H_\varepsilon(F) \leq B\rho^n \left( \frac{1}{\varepsilon} \right)^{n/s}$$

where  $A$  and  $B$  are positive constant, depending only on  $s$  and  $n$ , since in this case  $L = 1$ . But since

$$\frac{H_\varepsilon(F_{s,1,C})}{L} = H_\varepsilon(F)$$

for sufficiently small  $\varepsilon$

$$A(s, n) \rho^n \left( \frac{L}{\varepsilon} \right)^{n/s} \leq H_\varepsilon(F) \leq B(s, n) \rho^n \left( \frac{L}{\varepsilon} \right)^{n/s}$$

Q.E.D.