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ON THE EVALUATION OF GAUSSIAN SUMS
FOR NON-PRIMITIVE DIRICHLET CHARACTERS

by Henri JORIS

1. INTRODUCTION

Let y be a Dirichlet character mod m. We denote the conductor of y
by fand the corresponding primitive character by . For a natural number «,

‘we have the Gaussian sum

G(a,y) = Y x(k)exp <27‘Ci lg) .

k mod m m

We will write 7 (x) for % (1, y). It is well known that

& (OC, X) = X(O‘)T (X) > (1)

if ¥ is primitive, i.e. if y = . For non primitive characters, (1) does not
hold; according to H. Hasse [1], one has the following result:

THEOREM A. Lety, m, Y, f be asabove. For « e N we put oy = o/(xt, m),
my = m/(o, m). Then we have:

G (o, x) = 0 if fymg,
K (m) my Mo\ —
G (o, x) = o (m) ( 7 > W (_f_> W (o) T (W) 2)
it f|m,.

Here, as throughout this note, ¢ and u stand for the Euler totient and the
Moebius function.

In [1], theorem A is proved in an elementary way, using several steps
of reduction. See also [2].

In the present note we give another evaluation of ¢ («, y), using the
functional equation for Dirichlet L-series.
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THEOREM B. Let m, y, f, ¥ be as above. We put

m
q:ﬂp’Rz—ﬂ

A
where p denotes rational primes. Let the multiplicative function g be defined
by
gn) = p((n, @) o ((n,9)yn).
Then we have:

G (o, %) =OifR/]/oc ]} 3)

2. PROOF OF THEOREM B

For a Dirichlet character y mod m let the function L(s, y) be given by

L(s,y) = Y. x(m)n™*, Res > 1.
1

The series defines an analytic function for Re s > 1, which can be extended

to a meromorphic function on the whole complex plane, with at most one

simple pole at s = 1. If y is primitive, then L(s, y) satisfies the equation
nis nis

L(1=s,%) = m* 1 (2m)"° I'(s) (e~ 2 4 (=1 e‘f)ux) L(s, ) - (4)

Because of (1), this can also be written, for Re s > 1, as
is nis

L(1=s,7) = m* 1 2n)"*I'(s) <e~—2— +x(—1) eT) i::{é(n, n . (5

Whereas (4) holds only for primitive characters, (5) turns out to be valid
in the general case. In fact, a much more general formula is proved in [3],
th. 6.1; if we put there x = o« = 0, o, = x (n) and observe that ¥ (—n, y)
= y(—=1) % (n, x), we get (5) immediately. But also most of the classical
(= non-adelic) proofs of (4) will give (5) after very small changes. The only
use of the primitivity of y in these proofs is that they replace ¥ (n, y) by
7 (n) © (x) at some stage (See for instance [7]).

Now let y, m, ¥, f be as in the theorem. We have, by the Euler-product,

L(1—s,Y) H (1 - %1(1)
rla .

= L =sp@a v @I1-p @)

rla

I
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Formula (4) is valid if we write f for m and y for . Eliminating L (1 —s, %)
and L(1—s, ) out of the equations (4), (5), (6), and taking into account
that y (—1) = ¥ (—1), we obtain after an easy calculation, for Re s > 1:

Y % (n,0n"* =Rt pu@y (@R L, ¥) | ] (1 - piip)) (7)

1 pla

Using Euler’s product, we have for Re s > 1

L(s, ) III (1—=p¥(p)p~*)

=] Y v@Hpr ™. [1(1+0~-p) ki U (0 p7*)

pYa k=0 rl4q
= 1] kio ¥ (0" u (@ D)o (0", ) p™™

=1 X 9@Hp™ =2gmn*.
p k=0 1
If we put that into (7) we get
YG(m, " = Rf(l//)#(Q)ll/(Q)gg(n)(Rn)_s,
1
and we obtain (3) by comparing the coefficients.

3. In this section we show that one can prove theorem A using theorem B
and conversely. Let K («) resp. H () be the right hand side of (2) resp. (3).
We want to prove K («) = H («). First we show that K (o) # 0 iff H (&) # O.

Now H («) # 0iff R|a and (xR™!,f) =1, and this is equivalent to

(afq,fm) = m (8)
On the other hand K («) # 0 iff the four conditions hold
(o, m)f|m (9)
A fi (10)
is squarefree
(o, m) f
) 1)
wmys?) T~ 1

(04
((“’ -~ ,f> =1 (12)




At several places in the following we will use that ¢ is squarefree, (£, ¢) = 1
and the prime divisors of m are precisely the prime divisors of fg.
m

flo,m)
q. This proves (9) and (10). From f = m/(ag, m) we have

Let us assume (8). Then f(x, m)|f(xg, m) = m. Also
(og, m)
(a, m)

(atf(ot, m), f) = (a/(at, m), m[(ag, m)) | (of(e, m), mf(ex, m)) = 1.
This proves (12). Finally

m - f(agq, m) -
((oc, m)f’f) B <Wf> | (¢.f) =1,

oroving (11).

m
f (o, m) h

Conversely assume (9)-(12). From (10) and (11) we infer that
This implies

o7 B maf
m | m ((a, - ,f> = (f(a, ) ,nlf>
Also

. m o _ m
f(m: qa) - f(OC, m) ((OC, I’)’I) s q (OC, m)> - f(O(, 7’71) <(OC, m) s Q> .

In the last term, the numbers f and (m/ (x, m), g) both divide m/(«, m),
because of (9), and they are coprime, hence their product divides m/(a, m).
This gives f (m, go) | m. Together with (13) this implies (8).

It remains to prove that H («) = K (x) fora = Rn, (n,f) = 1. We have
my = mf(a, m) = fq/(n, fg) = fg/(n, q). Hence

(qof, mf) . (13)

R:ﬁ___w(m __em @ (m)
fo  o(f) oe(Ne@ o(NHe(( D)o (s
B @ (m)
@ ((n, 9)) @ (my)
hence
Ro((n,q) = ¢ (m)]e(mg) (14)
Also u(q) = n((n, @) 1(q/(n, 9)), so
p(@) u((n, ) = u(q/(n,q) = p(molf). (15)

Finally oy = n/(n, q), so agq = nmylf,
hence
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W (20) ¥ (@) = W (molf) ¥ (n)

or

wmwm>=$w&wC?> a9

Multiplying (14), (15) and (16) we find K (a) = H ().

4. SPECIAL CASES

(a) Theorem B implies that 7 (x) # 0 if and only if R = 1, that is, if
and only if m/f is squarefree and has no common divisor with /. We have

then
f&)=#(?>¢(?)f@) (17)

G (o, ) = g(@)T(x) (18)

On the other hand, if m/f is not square free or has a common divisor with £,
then the right hand side of (17) is zero. So, (17) holds for any character .
For another proof of this see [4], p. 148.

and

(b) If x = xo = principal character mod m, then f= 1, y = 1, © (¥)
= 1, ¢ = m = squarefree kernel of m, R = m/m, and % (a, y,) = C,, («)
= RAMANUJANS SUM.

Theorem B gives the well-known formula:
m

C,(0) =0 if <Y«
m

m m . - -
C, (E n) = =H (m) 1 ((n, m)) ¢ ((n, m)) .

From (17) we get for all m
C, (1) = p(m).

5. Remarks: (a) It is clear that % (o, y) cannot vanish identically.
So by 4. (a), formula (1) can only hold if R = 1, and if g (x) = ¥ («) for
all . But this is only possible if ¢ = 1, i.e. if m = f. This shows that (1)
characterises primitive characters, a fact proved by T.M. Apostol [5]. |
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(b) The last named author also proved ([6]), that if the functional
equation (4) holds, then y is primitive. One may prove this by comparing (4)
and (5), which gives 4 (a, x) = i (o) T (x); this in turn implies that y is
primitive, by the former remark. Still another proof is as follows: If ¢ = 1,
then L (s,%) = L(s,¥) and L(s,%) = L (s, ¥). So if (4) holds, we get
m = f, hence yx is primitive. If g > 1, then L (s, y) must have nonreal zeroes
on the imaginary axis; hence if (4) holds, L (s, ¥) has zeroes on the line

Re s = 1, contradicting a well known theorem on L-series.
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