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REPRESENTATION OF COMPLETELY CONVEX FUNCTIONS
BY THE EXTREME-POINT METHOD

by Christian Berg

0. Introduction

A function / : ]0, 1 [ -» R is called completely convex, if it is Cm and

(—1) kf{2k) L 0 for all k ^ 0. A completely convex function/is called minimal

if f (x) — a sin (nx) is not completely convex for any number a > 0.

Widder showed (cf. [5]) that a completely convex function can be extended

to an entire holomorphic function, and in the paper [6] he proved that a

minimal completely convex function can be expanded in a Lidstone series.

This indicates that the Lidstone polynomials lie on the extreme rays of the

cone W of completely convex functions.
The purpose of the present paper is to treat the completely convex

functions by the extreme-point method and to obtain the expansion in
Lidstone series as a special case of the Choquet representation theorem.

We will proceed as follows: In the topology of point-wise convergence
the set W of completely convex functions is a closed, metrizable convex cone.
We prove directly that the extreme rays of W are generated by certain
polynomials — essentially the Lidstone polynomials — and the function
sin (nx). The occurrence of the extreme ray generated by sin (nx) is related
to the fact that only minimal completely convex functions can be expanded
in Lidstone series.

The cone W has a compact convex base B, and the extreme points of
B are determined. It turns out that B is a Bauer simplex, i.e. B is a simplex

i and the extreme points form a closed set.

The author wants to acknowledge Widder's paper [6] as a source of
inspiration. The reason for writing this paper is that we felt it natural to
investigate the cone W by the extreme-point method.

Recently Mugler [2] showed that real part of the holomorphic extension
of /e W to the strip Reze]0, 1[ is completely convex on each segment
{x + iy I 0 < x < 1 }. We give a very short proof of this result.



1. Completely convex functions

Let 1 denote an open interval. A function / : I -> R is called completely

convex, if it is C00 and (—l)kf(2k) ^ 0 on I for k t 0. |

The set of completely convex functions is a convex cone denoted W
W (/). We always equip W with the topology of pointwise convergence,

i.e., with the topology induced by the product space R7.

Lemma 1.1. If I is unbounded W (I) consists of the non-negative |

affine functions, and W (R) consists of the non-negative constants.

Proof Assume first that inf/= — oo. Then every feW is decreasing
since it is non-negative and concave. For k it 0 and fe W we have

(—1 )kf(2k)eW and consequently (~l)kf(2k+1) 0. This shows that also
|

—f'e W and then —f" st 0, but by definition f" rt 0 and therefore / is

affine.
The case sup / oo is treated in a similar manner. Finally, every non-

negative concave function on R is constant.

Remark. Completely convex sequences are non-negative and affine.

For a sequence a (a0, a1, of real numbers we define Aa to be the

sequence (Aa)n an+1 — amnt 0, and Aka is defined as A (Ak'1a) for

kti 1, where A°a a. A sequence a is called completely convex if
(— 1 )kA2ka ^ 0 for k ^ 0. The same method as in Lemma 1.1 leads to the
conclusion that every completely convex sequence satisfies Aa t 0 and A2a

0. The completely convex sequences are therefore exactly the sequences

an (xn + ß, where a, ß ^ 0.

This is an answer to a remark by Boas [1] : "Nothing seems to be known
about completely convex sequences". j;

In the following we will always assume that I is bounded, and for the sake |

of convenience we choose /to be / ]0, 1 [. We simply write W for W (]0, 1 [). j

For fe W we have —f" e W and /* e W, where /* is defined by f* (x) t

f(l—x). The mapping/1->/* is an affine isomorphism of W onto itself.

Lemma 1.2. Let /:]0, 1[ R be non-negative and concave. Then the

following holds :

(i) fix) ^ 2/( y2) for xe]0,1[
(ii) fix) ^ ~f(x0) sin (nx) for x,x0e]0,1[.

71
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(iii) ([6], Lemma 7.1) If there exists x0 e]0, 1[ and a > 0 such that

f (x0) < a sin (7ix0) then f (x) ^ an for x e ]0, 1 [.

Proof (i). For % e ]0, %] we have that /(x) lies below the line through

(%>/(%)) anc* 0> anc* (0 follows for xe]0, %]. The interval [%, 1[ is

treated similarly.

(ii). Let x0 e ]0, 1[. For x e ]0, x0] we have

^ /(*o) ^ X ^ /(*(>) X

f(pc) ^ X ^/(x0) x è Sin (nx),
X0 71

and for x e [x0, 1 [ we have

r/ /(*o)(l ~x) ^ W1 x /(*o) • M x/(x) ^ —- ^/(x0)(l-x) è sin 7i(l-x)
1 — X0 71

/Où) • X

S m (7TX
n

(iii). If /(x0) > an the inequality (ii) implies that /(x) > a sin (nx) for
x ]0, 1 [.

Since everyf e W can be extended to an entire holomorphic function all
derivatives of/ have finite limits at 0 and 1. This can also be established in

an elementary way from the property (—1 )fc/(2/c) ^ 0 for k ^ 0. We will
therefore freely use/(/c) (x) for x 0, 1 as the limit of/(/c) (x) at these points.

Lemma 1.3. The cone W is a closed and metrizable subset of R7.

Proof The set of concave functions / : / - R is a closed and metrizable
subset of Rr, and therefore it suffices to prove that the pointwise limit/ ofa
sequence (/„) from W belongs to W.

It follows by Lemma 1.2 (i) that there exists a constant A such that

/„ ^ A for all n 1). The dominated convergence theorem then shows that

lim
M -> CO

f,,(x)v(x)dx (x)
Jo Jo

for all q> e 2 (]0, 1[), so (/„) converges to / weakly in the distribution
sense. Therefore (- ])kf<2k> ;> 0 for all k ^ 0 in the distribution sense, and
this implies that /is C00 and hence feW.') In fact, A2 sup fJ'A) can be used. It is finite because lim /„(Vi) exists.

«->00



2. Determination of the extreme rays of W

Inspired by [6] we consider the Green's function

(1 — x) t for 0 ^ t < x ^ 1

(1—0x for 0 ^ x ^ / ^ 1

G fx, t)

If cp is a continuous function on [0, 1] the unique solution f e C ([0, 1])
C2 Q0, 1[) to the equations

(2.1) f" -(p in ]0, 1[ /(0) =/( 1) 0

(2.2) /(*) G(x, t)cp{t)dt.

The successive iterates of G are defined for x, t e [0,1] by the equations

Gt (x, t) G (x, t)

Gn(x, t) G(x,y)Gn_1(y,t)']dy n > 2

It is clear that Gn (x, t) ^ 0 for x, t e [0, 1].

We define recursively a sequence of polynomials (An)n > 0 0 by the

requirement

(2.3) /l0(x) x,4i -A-i and /Ln(0) /ln(l) 0

for n ^ 1

The polynomial is of degree (2ft + 1), and we clearly have

(2.4) An(x) G (x, t) An_1 (0 dt Gn(x,t)tdt for

n ^ 1 x e [0, 1]

It follows that An ^ 0 on [0, 1] for all n, and since (—l)fcyin(2/c) An_k for
/c ^ ft we see that An e W.

We recall that a ray R+x of a cone C is called extreme, if an equation

x f+ g with f,geC is possible only if f, g e R+x, cf. [3].

x) Our terminology is different from that of [6] ; (— ifA n is equal to the n'th Lidstone
polynomial of [4] and [6].
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Proposition 2.1. The polynomials A„, n ^ 0, lie on extreme rays of W.

Proof If A0 f + g with fgeW we have 0 f" + g\ but since

f" and g" are both g 0, we conclude that/ and g are affine. Furthermore,
since /(0) #(0) 0, we conclude that / and g are proportional to A0.

Suppose now that AfJ_1, n > 1, lies on an extreme ray of W, and assume

that An f + g where fgeW. Then An_t —f" + (—#")> and ^ie
induction hypothesis implies that — f" and — g" are proportional to A„_1.
Therefore we have / XA„ (v) + ax + b for certain numbers X ^ 0, a, b.

Since 0 Sf S An, we have/(0) /( 1) 0 which implies that a b 0.

This proves that / (and similarly g) are proportional to An which then lies

on an extreme ray of W.

Since/1->/* is an affine isomorphism of Wthe polynomials A* also lie
on extreme rays of W. The following result is a special case of [6],
Theorem 1.1.

Proposition 2.2. Every function f e W can for n ^ 1 be written as

m "l - l)V(2ft>(0) A X (x) + - l)fc/(2fc)(l) A + R„ (x)

when

R„(x) G„(x,t)(-\)"f(2"\t)dteW.

Proof. For n 1 the formula is equivalent with

(2.5) f(x)-/(0)(l-x) -/(l)x - G ix, t)f" it) dt,

which follows directly from (2.2), and it is clear that e W.

Suppose now the formula holds for some n f 1. Applying (2.5) to
(~ îyy'2'0 e W we get

C- l)"/(2")(x) (-1 )"f(2n)(0)A*ix)

Gix,t)i-1 )" + 1f(2n+2)it)dt,

which substituted in the expression for R„ yields the formula for n + 1

because of (2.4).
To see that Rn e W we notice that

»1

(x, t) i - 1 )«/<2"> (f) dt for 0 ^ n 1

i-lff^ix) for k

L'Enseignement mathém., t. XXIII, fasc. 3-4. 13
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The following lemma is easy to establish, but instead of giving the proof
here we refer to [6].

Lemma 2.3. There exists a constant M > 0 such that

0 <
l M

Gn (x, t) dt tk - -2- for n ^ 1

Proposition 2.4. The only functions feW satisfying /(2/c) (0)
/(2/c) (1) 0 for all k ^ 0 are f(x) a sin (nx) with a 0.

Proof. Suppose feW satisfies /(2/c) (0) /(2*} (1) 0 for all k ^ 0.

Defining a « sup { a ^ 0 | /—a sin (nx) e Wj, g / — ß sin (7ix)

belongs to IF because H7 is closed in R1. Furthermore

g {2k) (0) g
(2/c) (1) 0 for all k ^ 0.

Let s > 0 be given. Since (p — g — s sin (nx) $ W, there exist k ^ 0

and x0 e ]0, 1[ such that (—1) fc<p(2ft) (x0) < 0, hence

— l)kgi2k) (x0) < 87i2k sin (nx0)

By Lemma 1.2 (iii) applied to (—1 )kg(2k) we get

(~l)kg(2k)(t) ^ en2k+1 for 0 < t < 1,

and therefore by Proposition 2.2 and Lemma 2.3 for 0 < x < 1

g (x)
l

2k+ 1

*1
0

G* (x, t) — l)kg(2k) (t) g en

^ sMn

This proves that # is identically zero.

l
Gk (x, t)dt

Proposition 2.5. The extreme rays of W are precisely the rays
generated by An and A*, where n ^ 0, and sin (nx).

Proof. We first show that sin (nx) lies on an extreme ray. If sin (nx)

f + g where fgeW, we have /(0) /(1) g (0) g (1) 0.

Differentiating 2k times we similarly get /(2/c) (0) /(2k) (1) g (2k)(0)

g{2k\l) 0, and it follows by Proposition 2.4 that / and g are

proportional to sin (nx).
We finally have to show that an arbitrary extreme ray is generated by

one of the above functions.
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Assume that fe IL generates an extreme ray. Iff(2k\0) f(2k){ 1) 0

for all k ^ 0 we already know by Proposition 2.4 that /is proportional to
sin (nx). Otherwise let n be the smallest number ^ 0 for which f{2n\0) 0

or f{2"\ 1) A 0. By Proposition 2.2 we then have

f(x) (-1)V(2,,)(0)A*n(x) +(-irfw(\)An(x)+Rn+1(x),
but since /lies on an extreme ray all three terms on the right-hand side lie

on this ray.
If/(2'°(0) A 0 this shows that (— \)nf{2n)(\)An and Rn + 1 are proportional

to A*. Therefore f(2n)( 1) 0 and R{n2ff2) f(2n + 2) is proportional to
(/l*)(2', + 2) 0, so that/(2,,+2) 0 and hence + 1 0 (cf. Proposition
2.2).

If/(2,,) (1) A 0 we similarly get/(2n) (0) 0 and i?n + 1 0. This shows

that /lies on the ray generated by either A* or An.

3. Determination of a base for W

There are several ways of determining a base for W. We choose the
following set

B <feW\ fix) sin (tlx) dx

By Lemma 1.2 (ii) we get for fe B and x0 e ]0, 1[ that

i:

isin2 (nx)dx —/(x0)
o 2tt

so the functions in B are uniformly bounded by 2n.
It is therefore clear that B is a compact convex base for W.
The extreme points of B are exactly the intersections between B and the

extreme rays of W. We see that 2 sin {nx) e B.
We claim that the following formulas hold, cf. [4]:

_ i * 2 sin (knx)M An& -ZSThï I -jàïT1' «^0,xe]0,l[,71 k =1 K

(3.2) AM
71 k 1 /v
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Formula (3.2) follows immediately from (3.1). For n 0 (3.1) is the
familiar formula

7i sin (knx)-(l-x) X }- 0 <x < 1.
^ k= i k

Suppose that (3.1) holds for n replaced by n - 1 for some n 1. Denoting
the right-hand side of (3.1) by fn, we have fn (0) fn (1) 0 and

„ 2 ® sin (knx)
J n W ~ ZFFA Lu T 2/i-l *

71 Ä =i K

which is equal to - T *_
1 by the induction hypothesis. It follows by (2.3)

that fn A *, and (3.1) is proved. From (3.1) and (3.2) it follows that
n2n + 1An and nln + 1A* e B. We also get lim nln+1An (x) lim n2n + 1A* (x)

n-+oo n-> oj

2 sin (nx). We have now established the following result:

Proposition 3.1. The set B is a compact convex base for W and the

extreme points of B are 2 sin (nx), n2n + 1A* (x), n2n + 1An (x), n ^ 0,

which form a closed subset of B.

By /+ we denote the set of sequences (ocn)n>0 of non-negative numbers
00

such that Yuan < °o-
o

By the Choquet representation theorem or just by the Krein-Milman
theorem we get the following, cf. [3]:

Theorem 3.2. For every f e W there exist a ^ 0 and sequences
(atn), (ßn) e 11 such that

00

(3.1) /(x) 2a sin (nx) + ann2n+1A* (x)
n 0

00

+ Z o <x < l.
n 0

The functions in .0 are uniformly bounded by 2n, and therefore the

series (3.1) is uniformly convergent.

If we differentiate the series in (3.1) two times and change sign we get
the series

/ °° 00 \
n2 \2a sin (nx) + £ a„+1n2n+1A* (x)+ £
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00 00

which also converges uniformly on ]0, 1[ because £ an+1 + £ ßn + 1

n=0 n=0

< 00.

It follows that the following formula holds:

(3.2) (-1 )kfw(x) n2k(2asin+ Z 1* (x)
V « 0

+ Z ßn + y"+LAn(x))
71 0 /

for 0 < x < I, k ^ 0 and furthermore

(3.3) a, Te-"-1 — l)V(2fc> (0) ßk (-l)V(2fc)(l)
for fc ^ 0

This proves that the sequences (aw), (^n) and hence also a are uniquely
determined by/. We have thus shown that B is a simplex. The extreme points
of B form a closed subset of B as remarked in Proposition 3.1 so we can
formulate the following

Corollary 3.3. The base B for W is a Bauer simplex.

Whittaker proved in [4] that the series in (3.1) in fact converges uniformly
over arbitrary compact subsets of the complex plane. This also proves that/
can be extended to an entire holomorphic function which we also call f
For x g ]0, 1 [ and jeRwe then have

00 (ivt
/(x + iy)Z

fc 0 k '

hence

v2k
Re / (x + iy)Z ——

* o (2k)

which shows that x Ref (x + iy) belongs to W for all ye R, as sum of the
functions

y2k
x »-> — 1 )k f2k (x)

(2k)
which all belong to the closed cone W.

This gives a short proof of the recent result of Mugler [2].

fc-



— 190 —

REFERENCES

[1] Boas, Jr., R. P. Signs of derivatives and analytic behavior. Amer. Math. Monthly 78

(1971), 1085-1093.
[2] Mugler, D. El. Completely convex and positive harmonic functions. SIAM J. Math.

Anal. 6 (1975), 681-688.
[3] Phelps, R. R. Lectures on Choquet's theorem. Van Nostrand, Princeton, N.J., 1966.

[4] Whittaker, J. M. On Lidstone's series and two-point expansions of analytic functions.
Proc. London Math. Soc. 36 (1934), 451-469.

[5] Widder, D. V. The Laplace transform. Princeton University Press, Princeton, N.J.,
1941.

[6] Completely convex functions and Lidstone series. Trans. Amer. Math. Soc. 51

(1942), 387-398.

Christian Berg

Matematisk Institut
Universitetsparken 5

2100 Kobenhavn 0

(Reçu le 26 avril 1977)

Danmark


	REPRESENTATION OF COMPLETELY CONVEX FUNCTIONS BY THE EXTREME-POINT METHOD
	0. Introduction
	1. Completely convex functions
	2. Determination of the extreme rays of W
	3. Determination of a base for W
	...


