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REPRESENTATION OF COMPLETELY CONVEX FUNCTIONS
BY THE EXTREME-POINT METHOD

by CHRISTIAN BERG

0. INTRODUCTION

A function f£:]0, I[ — R is called completely convex, if it is C” and
(—=1) %20 > 0 for all k = 0. A completely convex function fis called mini-
mal if f(x) — a sin (nx) is not completely convex for any number a > 0.
Widder showed (cf. [5]) that a completely convex function can be extended
to an entire holomorphic function, and in the paper [6] he proved that a
minimal completely convex function can be expanded in a Lidstone series.
This indicates that the Lidstone polynomials lie on the extreme rays of the
cone W of completely convex functions.

The purpose of the present paper is to treat the completely convex
functions by the extreme-point method and to obtain the expansion in
Lidstone series as a special case of the Choquet representation theorem.

We will proceed as follows: In the topology of point-wise convergence
the set W of completely convex functions is a closed, metrizable convex cone.
We prove directly that the extreme rays of W are generated by certain
polynomials — essentially the Lidstone polynomials — and the function
sin (nx). The occurrence of the extreme ray generated by sin (nx) is related
to the fact that only minimal completely convex functions can be expanded
in Lidstone series.

The cone W has a compact convex base B, and the extreme points of
B are determined. It turns out that B is a Bauer simplex, i.e. B is a simplex
and the extreme points form a closed set.

The author wants to acknowledge Widder’s paper [6] as a source of
inspiration. The reason for writing this paper is that we felt it natural to
investigate the cone W by the extreme-point method.

Recently Mugler [2] showed that real part of the holomorphic extension
of fe W to the strip Rez€]0, 1] is completely convex on each segment
{x +iy]0 < x < 1}. We give a very short proof of this result.
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1. COMPLETELY CONVEX FUNCTIONS

Let 7 denote an open interval. A function f: I — R is called completely
convex, if it is C* and (=1 > 0 on I for k = 0.

The set of completely convex functions is a convex cone denoted W
= W (I). We always equip W with the topology of pointwise convergence,
i.e., with the topology induced by the product space R.

Lemma 1.1. If 1 is unbounded W (I) consists of the non-negative
affine functions, and W (R) consists of the non-negative constants.

Proof. Assume first that inf / = —oo. Then every fe W is decreasing
since it is non-negative and concave. For kK = 0 and fe W we have
(=1)f @® e W and consequently (—1)¥/2**1) < 0. This shows that also
—f"e W and then —f" < 0, but by definition f“ < 0 and therefore f is
affine.

The case sup / = oo is treated in a similar manner. Finally, every non-
negative concave function on R is constant.

Remark. Completely convex sequences are non-negative and affine.

For a sequence a = (a,, a4, ...) of real numbers we define 4a to be the
sequence (4a), = a,,; — a,,n = 0, and A*a is defined as 4 (4" 'a) for
k = 1, where A% = a. A sequence a 1s called completely convex if
(—1)*4%*a = 0 for k = 0. The same method as in Lemma 1.1 leads to the
conclusion that every completely convex sequence satisfies 4a = 0 and 4%a
= 0. The completely convex sequences are therefore exactly the sequences
a, = an + f, where o, f = 0.

This is an answer to a remark by Boas [1]: “Nothing seems to be known
about completely convex sequences”.

In the following we will always assume that 7 is bounded, and for the sake
of convenience we choose /tobe I = 0, 1[. We simply write W for W (J0, 1]).
For fe W we have —f"e W and f* e W, where f* is defined by f* (x)
= f(1—x). The mapping /'~ f* is an affine isomorphism of W onto itself.

LemMma 1.2. Let f:]0, 1] > R be non-negative and concave. Then the
following holds :

0 ) <2f(%)  for xelo,1[.

() S0 2 f(x) sin () for  xxo€]0, 1T
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(iii) ([6], Lemma 7.1) If there exists x,€10,1[ and a >0 such that
f(xo) < asin(nxy) then f(x) =< an for xe€]0, 1.

Proof. (i). For x €10, 4] we have that /' (x) lies below the line through
(Y%, f (%)) and (1, 0) and (i) follows for x € ]0, 146]. The interval [15, 1[ 18
treated similarly.

(ii). Let xo, €10, 1[. For x € ]0, x,] we have

J(xo) J(xo)

f(x) = x = f(xg) x = -sin (7x),
X0
and for x € [x,, 1[ we have
70 278U 2 (12 275 in m1 )
1 — x, T
S xo) sin (7x) .
T

(iii). If f(xo) > an the inequality (ii) implies that f(x) > a sin (nx) for
xel0, 1[.

Since every f'e W can be extended to an entire holomorphic function all
derivatives of f have finite limits at 0 and 1. This can also be established in
an elementary way from the property (—1)¥/©Z® > 0 for £ = 0. We will
therefore freely use £ ® (x) for x = 0, 1 as the limit of /' ® (x) at these points.

LeEMMA 1.3. The cone W is a closed and metrizable subset of R”.

Proof. The set of concave functions ' : I — R is a closed and metrizable
subset of R, and therefore it suffices to prove that the pointwise limit f of a
sequence (f,) from W belongs to W.

It follows by Lemma 1.2 (i) that there exists a constant 4 such that
fn < A for all n1). The dominated convergence theorem then shows that

r1

1

im | 90 = [ f(0@ iy
n— 0 0

for all p € 2 (]0, 1), so (f,) converges to f weakly in the distribution

sense. Therefore (— 1)/ ** = 0 for all k£ = 0 in the distribution sense, and

this implies that fis C* and hence fe W.

) In fact, A = 2 sup f,,(2) can be used. It is finite because lim f,('2) exists.

n—oo




T
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2. DETERMINATION OF THE EXTREME RAYS OF W

Inspired by [6] we consider the Green’s function

(1=x)t for 0=<t<x
(I—-t)x for O0ZxZ<t

L,

G(x,t) =
N ) { 1.

A IIA

If ¢ 1s a continuous function on [0, 1] the unique solution fe C ([0, 1])
~ C?(]0, 1]) to the equations

(2.1) fr= —in]0,1[, £(0) =f(1) =0
1S
(2.2) Fx) = J G (x, 1) (t)dt .

0

The successive iterates of G are defined for x, 7 € [0,1] by the equations

Gi(x,t) = G(x,t)

1
G,(x,t) = f G(x,9) G,y (y,t)]dy, n=2.

0

It is clear that G, (x, t) = O for x, t € [0, 1].
We define recursively a sequence of polynomials (A4,), > ') by the
requirement

(23) AO (X) = X, A;; = _An—l and An(o) = An(l) =0
for n=1.

The polynomial A, is of degree (2n + 1), and we clearly have

0 0

n=1, xe[0,1].

It follows that A4, = 0 on [0, 1] for all n, and since (—1)*4,%% = A, _, for
k < n we see that A4, e W.

We recall that a ray R, x of a cone C is called extreme, if an equation
x = f+ g with f, g € C is possible only if f, g € R, x, cf. [3].

(2.4) A,(x) = j G(x,t) A, (1)dt = JlGn(x,t)tdt for

1) Qur terminology is different from that of [6]; (—1)"4,, isequal to the n’th Lidstone
polynomial of [4] and [6].
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PROPOSITION 2.1. The polynomial& A, n =0, lie on extreme rays of W.

Proof. If Ay, = f + g with f,ge W we have 0 = f" + ¢”, but since
/" and g” are both < 0, we conclude that f and g are affine. Furthermore,
since f(0) = g(0) = 0, we conclude that /' and g are proportional to A,.

Suppose now that 4,_,, » = 1, lies on an extreme ray of W, and assume
that A, = f+ g where f,ge W. Then A,_, = —f" + (—g"), and the
induction hypothesis implies that — f” and — g” are proportional to 4, _;.
Therefore we have f = 14, (x) + ax + b for certain numbers A = 0, a, b.
Since 0 < f < 4, we have £(0) = f(1) = 0 which implies thata = b = 0.
This proves that f (and similarly g) are proportional to A, which then lies
on an extreme ray of W. ‘

Since f+ f* is an affine isomorphism of W the polynomials A also lic
on extreme rays of W. The following result is a special case of [6],
Theorem 1.1.

ProPOSITION 2.2. Every function fe W can for n = 1 be written as
n—1

Sy = 2 (=DE0) A (x) + (= DO 4,(x)) + R, (x),

k=0
where

R,(x) = f G, (x, ) (=)' fC()dte W.

0
Proof. For n = 1 the formula is equivalent with

1
(2.5) f() =fO)(A-x) —f(1)x = Ry (x) = — f G(x,0)f"(1)dt,

which follows directly from (2.2), and it is clear that R, € W.

Suppose now the formula holds for some n = 1. Applying (2.5) to
(=173 e W we get

(=1 S (x) = (=1)"fE0) AT (x) + (= 1D"f @ (1) A, (x)
+ f G(X,If)(—l)'1+1f(2'l+2)(t) dt,

which substituted in the expression for R, yields the formula for n+ 1
because of (2.4).

To see that R, € W we notice that
1

(_ 1)kRn(2k) (X) — J‘() Gn—-k ('xa t) ( — l)nf(Zn) (t) dt for 0 é k é n—1

(= DFf 0 (x) for k=>n.

L’Enseignement mathém., t. XXIII, fasc. 3-4., 13
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The following lemma is easy to establish, but instead of giving the proof
here we refer to [6].

LemMma 2.3. There exists a constant M > 0 such that

1
M
O_S__J\ G,(x,t)dt £ for 0=x=1,n2=1.

a 71:2;1

PROPOSITION 2.4. The only functions fe W satisfying f*9 (0)
=fCO 1) =0 forall k=0 are f(x) = asin(nx) with a = 0.

Proof. Suppose fe W satisfies £** (0) = f©@¥ (1) = 0 for all k = 0.
Defining @ = sup {« 2 0| f—a sin (nx) e W}, g = f — a sin (nx)
belongs to W because W is closed in R!. Furthermore

g @ 0) =g @ (1) =0forall k = 0.

Let ¢ > 0 be given. Since ¢ = g —e¢ sin (nx) ¢ W, there exist k = 0
and x, €10, 1[ such that (—1) *¢®* (x,) < 0, hence

(=1 g (xy) < en?®* sin (nx,) .
By Lemma 1.2 (iii) applied to (—1)*¢®* we get
(=1Yg@® () < en®*t  for O0<t<1,

and therefore by Proposition 2.2 and Lemma 2.3 for 0 < x < 1

1

g (x) = Jl Gy (x, ) (= D@ (1) dt < en®* ™! j Gy (x,1) dt

0 0
< eMm.

This proves that g is identically zero.

PRrROPOSITION 2.5. The extreme rays of W are precisely the rays
generated by A, and A}, where n = 0, and sin (nx).

Proof. We first show that sin (nx) lies on an extreme ray. If sin (7x)
= f+g where f,ge W, we have f(0) =f(1) =¢g@0) =g() =
Differentiating 2k times we similarly get f@% (0) = £ (1) = g Z¥(0)
= g©®®(1) = 0, and it follows by Proposmon 2.4 that f and g are pro-
portional to sin (7x).

We finally have to show that an arbitrary extreme ray is generated by
one of the above functions.
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Assume that /'€ W generates an extreme ray. If £ ?0(0) = f©@(1) = 0
for all k = 0 we already know by Proposition 2.4 that f is proportional to
sin (nx). Otherwise let n be the smallest number = 0 for which f?”(0) # 0
or £ (1) # 0. By Proposition 2.2 we then have

f(x) = (=D"fC0) A} (x) + (=1)"fE (1) 4,(x) + Rysy (%),

but since f lies on an extreme ray all three terms on the right-hand side lie
on this ray.

If £"(0) # 0 this shows that (—1)"f *"(1)4, and R, ; are proportional
to A¥. Therefore f@"(1) = 0 and R'%¥"® = f£(3*2) i5 proportional to
(AT)P"*2) = 0, so that £®"*2) = 0 and hence R,,; = 0 (cf. Proposition
2.2).

If £ @™ (1) 0 we similarly get f*” (0) = 0 and R,,; = 0. This shows
that f lies on the ray generated by either A7 or 4,.

3. DETERMINATION OF A BASE FOR W

There are several ways of determining a base for . We choose the
following set

B = {fer flf(x) sin (nx)dx = 1}.
8

By Lemma 1.2 (i1) we get for fe B and x, € ]0, 1] that

1 = —1~f(xo) f sin® (nx)dx = ~1—f(xo),
T 0 27

so the functions in B are uniformly bounded by 2x.

It is therefore clear that B is a compact convex base for W.

The extreme points of B are exactly the intersections between B and the
extreme rays of W. We see that 2 sin (nx) € B.

We claim that the following formulas hold, cf. [4]:

o0

| 2
(B AF(x) = p—)
! k

=1

sin (knx)
k2n+ 1

, =0, xe]0, 1] ,

2 2 sin (knx
£ 32 4, = TS Y (=1t —],Zr(n+1 )~, n>0,xe]0,1[.

k=1
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Formula (3.2) follows immediately from (3.1). For n = 0 (3.1) is the
familiar formula
T * sin (k
Tlexy = 3 W& 1
2 k=1 k
Suppose that (3.1) holds for n replaced by n — 1 for some n = 1. Denoting
the right-hand side of (3.1) by f,, we have £, (0) = £, (1) = 0 and

w0

) = — e y sin (k7mx)

Pt an-—l

which is equal to —A,", by the induction hypothesis. It follows by (2.3)
that f, = A, and (3.1) is proved. From (3.1) and (3.2) it follows that
*" 1A, and n*" 1 AF € B. We also get lim n?" 1A, (x) = lim 72" "1 A% (x)

| Advel n— o0

= 2 sin (nx). We have now established the following result:

PROPOSITION 3.1. The set B is a compact convex base for W and the
extreme points of B are 2 sin (nx), n*"TiA% (x), n*"T1A, (x), n = 0,
which form a closed subset of B.

By I} we denote the set of sequences (%)n 0 Of non-negative numbers
such that Z %, < 0.

By the Choquet representation theorem or just by the Krem-Mllman
theorem we get the following, cf. [3]:

THEOREM 3.2. For every fe W there exist a = 0 and sequences
(a,), (B)ell such that

(3.1) f(x) = 2a sin (nx) + ), o,m*" 1A% (%)
n=0
+ Y BATIA); 0<x <.
n=0

The functions in B are uniformly bounded by 2z, and therefore the
series (3.1) is uniformly convergent.

If we differentiate the series in (3.1) two times and change sign we get
the series | |

n? (2a sin (mx) + Y. ope 72" HAE () + Y ﬁ,,HnZ"“A,,(x)),

n=0 n=0
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which also converges uniformly on ]0, I[ because Z Oprq T+ Z B+t

n=0 n=0
< 0.
It follows that the following formula holds:

(3.2) (=D (x) = n** (2a sin (nx) + Y, o, 72T AN (X)

Z ﬁn~l—k7-52n+ 1/111 (X))

for 0 < x < 1, k = 0 and furthermore

(3.3) o =21 fPO0), B = a7 F (=D R (D)
for k=0.

This proves that the sequences («,), (f,) and hence also a are uniquely
determined by f. We have thus shown that B is a simplex. The extreme points
of B form a closed subset of B as remarked in Proposition 3.1 so we can
formulate the following

COROLLARY 3.3. The base B for W is a Bauer simplex.

Whittaker proved in [4] that the series in (3.1) in fact converges uniformly
over arbitrary compact subsets of the complex plane. This also proves that f
can be extended to an entire holomorphic function which we also call f.
For x €10, 1[ and y € R we then have

f+iy) = ¥ FO(x )

k_
hence
2k

Ref (i) = L (=D ) s

which shows that x — Ref (x +iy) belongs to W for all y € R, as sum of the

functions
2k

k g2k ¥
x = (=D f (’0(2?)“'

which all belong to the closed cone W.
This gives a short proof of the recent result of Mugler [2].




— 190 —

REFERENCES |

[11 Boas, Jr., R. P. Signs of derivatives and analytic behavior. Amer. Math. Monthly 78
(1971), 1085-1093.

[2] MuUGLER, D. H. Completely convex and positive harmonic functions. STAM J. Math.
Anal. 6 (1975), 681-688.

[3] PHELPS, R. R. Lectures on Choquet’s theorem. Van Nostrand, Princeton, N.J., 1966.

[4] WHITTAKER, J. M. On Lidstone’s series and two-point expansions of analytic functions.
Proc. London Math. Soc. 36 (1934), 451-469.

[5]1 WIDDER, D. V. The Laplace transform. Princeton University Press, Princeton, N.J.,
1941.

[6] —— Completely convex functions and Lidstone series. Trans. Amer. Math. Soc. 51
(1942), 387-398.

( Regu le 26 avril 1977)

Christian Berg

Matematisk Institut
Universitetsparken 5
2100 K@benhavn @

Danmark




	REPRESENTATION OF COMPLETELY CONVEX FUNCTIONS BY THE EXTREME-POINT METHOD
	0. Introduction
	1. Completely convex functions
	2. Determination of the extreme rays of W
	3. Determination of a base for W
	...


