
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 23 (1977)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ALTERNATIVE HOMOTOPY THEORIES

Autor: James, I. M.

Kapitel: 2. EQUIVARIANT HOMOTOPY THEORY

DOI: https://doi.org/10.5169/seals-48928

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-48928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 223 —

similar. We work with the category of pointed G-spaces, i.e. G-spaces with

fixed point. The suspension functor I and the loop-space functor Q are

then defined, also the binary functors wedge v and smash a This

corresponds, of course, to the category of sectioned G-bundles, i.e. G-bundles

with cross-section, where these functors are also defined and commute with

the principal functor. We prefer, however, to enlarge this to the category

of ex-spaces — see § 4.

2. EQUIVARIANT HOMOTOPY THEORY

Let G be a topological group and let At (z= 1, 2) be a pointed G-space.

The space of pointed G-maps / : A1 -> A2 is denoted by MG(A1,A2),
and the set of pointed G-homotopy classes of pointed G-maps by %G (Ax, A2).

The class of the constant map e: A1 A2 is denoted by 0. In this context

we reserve the symbol ~ for the relation of pointed G-homotopy.
Let A be a pointed G-space with base-point a0, and let p, q\ A -> A x A

be given by

p (x) (x, a0), q (x) « (a0, x) (x e A)

By a Hopf G-structure on A we mean a pointed G-map m: A x A -> A

such that

mp ~ 1 ~ mq: A -» A ;

given such a structure we refer to A as a Hopf G-space. For example, the
reduced product space Am (see [5]) of any pointed G-space A is an associative

Hopf G-space x), If A2 is a Hopf G-space then nG(A1, A2), for any pointed
G-space AJm obtains a natural binary operation with 0 as neutral element2).

If m : A x A -» A satisfies the conditions for a topological group then,
as before, we describe A as a group G-space. If m satisfies these conditions

up to pointed G-homotopy then we describe A as a group-like G-space.
Note that nG (Al9 A2) is a group when A2 is group-like. This is so, in
particular, when A2 QA2 with standard Hopf G-structure for any pointed
G-space A2. If A2 itself is a Hopf G-space then the group is abelian, by the
usual argument.

1) Under suitable conditions it can be shown, using Segal's theorem, that Am has
the same pointed G-homotopy type as

2) Another application of Segal's theorem is to show, following Sugawara [14], that
this binary set forms a loop, under suitable conditions, and hence a group when the
Hopf G-structure is pointed G-homotopy associative.
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The notions of coHopf G-space and cogroup-like G-space are defined in
the obvious way. If Ax is a coHopf G-space then nG (A1} A2), for any pointed
G-space A2, obtains a binary operation with 0 as neutral element; moreover
7zG (Aî9 A2) is a group when A1 is cogroup-like. In particular ZA1 is cogroup-
like, for any pointed G-space Au and the adjoint functor determines an

isomorphism
Ç:tzg(ZAu A2) -> nG(Au QA2).

Using this we can define Whitehead products in equivariant homotopy
theory as follows.

We say that a pointed G-space X is well-based if there exists a
neighbourhood U of the basepoint x0 in X such that

(i) x0 is an equivariant deformation retract, rel x0, of U, and

(ii) there exists an invariant map u: X -* / such that ux0 1 and ux
— 0 for x £ U.

Let A, B be well-based G-spaces. Then (cf. [12]) for any pointed G-space
Y the equivariant form of the Puppe sequence

0 -+nG(A aB,QY)n. na(AxB,QY)-C v QY) -> 0

is exact. Here q denotes the inclusion and p the collapsing map. From given
elements a' e tzg (A, Q Y), ß' e nG (.B, Q Y) we can obtain a", ß" e nG (A
x B, QY) by precomposition with the structural maps of the product.
Since the commutator a""1 /T"1 a ß" lies in the kernel of q* there

exists, by exactness, a (unique) element

<a', ßf > enG (A aB, QY)

with image this commutator. The Samelson pairing

tig(A,QY) x 7zg(B,QY) ->nG(A aB,QY)

thus defined is bilinear, just as in [1], and has the property that

<oc\ßf> - T* <ß\af>
where T denotes the switching map. The Whiteheadproduct [a, ß] of elements

a g 7iG (ZA, Y), ß e %G {IB, Y) is defined by

£[a,£|

where denotes the adjoint isomorphism. Clearly the Whitehead pairing

7iG (ZA, Y) x 7iG (IB, Y) 7iG (Z {A a B), Y)
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thus defined is bilinear and has the property that

(2.1) [a.jß] - (2T)* [/), a]

It is a straightforward exercise, as in the ordinary theory, to show that the

Whitehead pairing vanishes if F is a Hopf G-space, and hence vanishes

under suspension. Moreover the suspension ZZ of a compact well-based

G-space Z is a Hopf G-space if and only if the Whitehead square

w(ZZ)enG(Z(Z a Z),IZ)
of the identity vanishes.

It should also be noted that the Jacobi identity holds for Samelson

products and hence for Whitehead products, by an equivariant version
of the argument given by G. W. Whitehead [16]. Specifically, consider the

permutations

B a C A A -> A A B A C -> C a B A A

where A, B, C are suspensions of pointed G-spaces. Let

aenG(ZA, 7), ßenG(ZB, 7), yenG(ZC, 7),
where 7 is a pointed G-space. Then the relation

(2.2) [a, [ß, -y]] + (2V)* [ß, [y, a]] + (2r)* [a, ßj] 0

holds in the group nG (Z (A aBa C), 7).

3. Some examples

We need to begin by discussing briefly some relations between the categ-
ory of G-spaces and the category of pointed G-spaces, as follows. Given
spaces A, B we denote points of the join A*B by triples (a, b, t) where
a e A, b e B, t e /, so that (<a, b, t) is independent of a when t 0, of b

when t — 1. A basepoint b0 e B determines a basepoint (<a, b0, 0) in A*B.
\ If A, B are G-spaces we make A*B a G-space with action

(a, b9t)g (ag, bg, t) (g e G).

Note that is pointed if £ is. When B S°, with trivial action, then

A*B ZA, the unreduced suspension2).

1) This differs by an automorphism from the normal définition.
2) We regard this as an identification space of the cylinder, in the usual way.
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