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and
” xX*x H = ” tz for all normal xeA.

Then A is a B*-algebra.

In a later paper [48] Sebestyén claimed to prove that continuity of the
involution can be dropped from Theorem 2 above. However, G. A. Elliott
has pointed out an error in [48]; indeed, on line four of page 212 the series
displayed, although convergent, is not shown to converge to the quasi-
inverse of 17 !'x. The paper does reduce the problem to the commutative
case; but in this case it remains an interesting open question.

8. APPLICATIONS

Numerous applications of the Gelfand-Naimark theorems appear in the
literature. Indeed, utilizing the representation theorem for commutative
algebras important theorems in abstract harmonic analysis can be estab-
lished. For example both the Plancherel theorem and the Pontryagin duality
theorem are proved in [33] via the commutative theorem. Further applica-
tions to harmonic analysis can be found in [15], [30], [33] and [37]. The
representation theorem for commutative algebras can be used to establish
important results on compactifications of topological spaces and locally
compact abelian groups (see [15], [30] and [33]); it also provides the most
elegant method of proof of the spectral theorem for normal operators on a
Hilbert space ([15], [30], [33]).

Applications to group representations and von Neumann algebras can
be found in [13] and [37]. For applications to numerical ranges of operators
see [7], [9], [10], [11] and [34].

In recent years the theory of C*-algebras has entered into the study of
statistical mechanics and quantum theory. The basic principle of the
algebraic approach is to avoid starting with a specific Hilbert space scheme
and rather to emphasize that the primary objects of the theory are the fields
(or observables) considered as purely algebraic quantities, together with
their linear combinations, products, and limits in an appropriate topology.
The representations of these algebraic objects as operators acting on-a
suitable Hilbert space can then be obtained in a way that depends essentially
only on the states of the physical system under investigation. The principal
tool needed to build the required Hilbert space and associated representa-
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tion is the Gelfand-Naimark-Segal construction discussed earlier in this
article.

A substantial literature has now emerged from this new algebraic point
of view and a recent book by G. Emch [18] has been written with the express
purpose of offering a systematic introduction to the ideas and techniques of
the C*-algebra approach to physical problems. The authors recommend
this book to the reader who would like to pursue this subject further. The
book contains a bibliography of more than four hundred items which
should aid the interested reader in his study of this new and interesting
application of operator algebras.
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