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Hence we obtain a commutative diagram as follows, relating the modified

exact sequences for Q and M.

* n{r(Q))

(r(7))*
t

re (r(M))

n„(G)

f,
(N)

Recall that Ô is the obstruction to extending A to a vertical homotopy
of e'# into c'Hence /#<5 is the obstruction to extending / o to a vertical

A A

homotopy of/ o e' # into foe'#. Hence it follows, as explained in the pre-
A A

vious section, that foe'# and foe'# are vertically homotopic if and only if
<5 g Dn1 (N). Finally we use the correspondence between ex-maps and cross-
sections to obtain (7.2) as stated.

8. Examples

Let X be a finite simply-connected complex and let P be a principal
SO (m)-bundle over X. Consider the antipodal self-map a of Sm~1. The

A
unreduced suspension a is a pointed SO (m)-map of Sm into itself. Hence

A
P#a is an ex-map of E P#Sm into itself; let a e nx (E,E) denote the ex-

A

homotopy class. Since a is of degree (- l)m we can apply (5.3) and obtain
that

(8.1) — 2r (m even),

where r reg (X). It follows at once that

(8.2) 2r+1[iIE,iIE] 0 (m even)

by (2.1) and (3.1), and hence from (3.3) that

(8.3) ~ 0 (m even)

Here iIE denotes the ex-homotopy class of the identity on IE. Similar
results, but under more restrictive conditions, have been obtained by
Eggar [4]. It can also be shown that the quadruple Whitehead products

[[*!£> 1IE]i llZE> Ï«]], \_lSE> [}lEi 7£E]]]

are trivial, whether m is even or odd.



— 236 —

In particular, let X be a sphere. For m even (8.1) shows that 21
2 and (8.2) that 4 [iIE, iIE\ 0. However, more precise results can be

obtained by using the methods of §7, as follows. Take X Sn (n > 2)
and let 0 e nl}_i SO (m) be the classifying element of P. We apply (7.2)
with / 1 and, using (6.4), obtain

Theorem (8.4). Let m be even. Then 27.<7 1 if and only if I^JFO
is contained in the image of

D-„+ 2 (Sm+1) -V 7t„ + m+i (Sm+1)
where

DaZ^JO or;1« - ao z2tje.

In the stable range, where m > n, the homomorphism D is trivial and
FO 0 o as in §6 of [6], where rj generates the 1-stem. In this range it
does not matter whether we deal with ex-maps or over-maps, and so (8.4)

agrees with (4.5) of [8].

Now let im denote the pointed SO (m)-homotopy class of the identity
on Sm, so that iIE Represent the Whitehead square

w(2S-) [2^m,2,qJ

by a pointed SO (ra)-map / : 2 (Sm ASm) ISm. Then P#f represents
the Whitehead square

vv (SE) P#w (ISm)

We apply (7.2) again and, using (6.2)-(6.4), obtain

Theorem (8.5). Let m be even. Then 2w (IE) 0 if and only if
wm + 1 o I + 1JF9 lies in the image of

D:n2m + 2(Sm + 1) ^nn + 2m + 1(Sm + 1h

where Da a o Im^2JQ - 21*JO o

Here wm + 1 en2m + 1 (5m + 1) denotes the ordinary Whitehead square of
the generator of nm + 1 (Sm + 1). Unless m 2 or 6 we have wm+1 ^ 0 and

(8.5) determines the order of w (IE). When m 2 or 6 it would be interesting
to know when w (IE) 0, i.e. when IE is a Hopf ex-space, but unfortunately

our method does not apply.
For some examples where the order of w (IE) is (precisely) 4, consider

the transgression A : nn (Sm) -» 71^.! SO (m) in the homotopy exact
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sequence of the standard fibration of SO (m + 1). Take 6 d</>, where
cjh e 1*7zn_l (Sm_1). Then Z*J6 0 and so D is trivial. However it follows
from (4.1) and (6.3) of [6] that

I*JF9 [Z*im,Z*fi].

This Whitehead product is non-zero if, for example, m n and cj> im

with m # 2, 6. Of course E is trivial as a bundle, in these examples, although
not as a sectioned bundle.
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