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Hence we obtain a commutative diagram as follows, relating the modified
exact sequences for Q and M.

nll (G) o

- R(F(Q))

\ b
(N) — =n(I'(M))

T

n

Recall that & is the obstruction to extending A to a vertical homotopy
of ¢’ . into c’# Hence f,6 is the obstruction to extending f o A to a vertical

homotopy of f oe 5 into f oc G Hence it follows as explained in the pre-

vious section, that f o e’ 4 and f o ¢’ are vertically homotopic if and only if
6 € D, (N). Finally we use the correspondence between ex-maps and cross-
sections to obtain (7.2) as stated.

8. EXAMPLES

Let X be a finite sirﬁply-connected complex and let P be a principal
SO (m)-bundle over X. Consider the antipodal self-map a of S™~!. The

unreduced suspension a is a pointed SO (m)-map of S™ into itself. Hence

A

Pais an ex-map of E = P,S™ into itself; let o € ny (E, E) denote the ex-

A

homotopy class. Since a is of degree (—1)" we can apply (5.3) and obtain
that ‘

(8.1) 2'¥,0 = 2" (m even) ,

where r = reg (X). It follows at once that

(8.2) 2" iy, 155] = 0 (m even)
by (2.1) and (3.1), and hence from (3.3) that
(8.3) [tse, (155, 15]] = 0 (m even) .

Here 1;; denotes the ex-homotopy class of the identity on YE. Similar
results, but under more restrictive conditions, have been obtained by
Eggar [4]. Tt can also be shown that the quadruple Whitehead products

[[lZEa \le:|7 L3k, ’,YE]]: [’ZEa [lea 13k, 72E]]]

are trivial, whether m is even or odd.




oo e — e
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In particular, let X be a sphere. For m even (8.1) shows that 2%.0
= 2 and (8.2) that 4 [iy; 1,5] = 0. However, more precise results can be
obtained by using the methods of §7, as follows. Take X = S"(n > 2)
and let 0 e n,_, SO (m) be the classifying element of P. We apply (7.2)
with /= 1 and, using (6.4), obtain

THEOREM (8.4). Let m be even. Then X.c = 1 if and only if X.JFO
is contained in the image of

D:nnl+2(S"’+1) = Tptm+1 (SmH) >
where
Do = Z_*JQOZ';_ICL —a0XiJ0.

In the stable range, where m > n, the homomorphism D is trivial and
FB = 0 cn, asin §6 of [6], where  generates the 1-stem. In this range it
does not matter whether we deal with ex-maps or over-maps, and so (8.4)
agrees with (4.5) of [8].

Now let 1,, denote the pointed SO (m)-homotopy class of the identity
on S™, so that 1y = P,2,1,. Represent the Whitehead square

w (Zsm) = [Z;}:lma Z*lm]

by a pointed SO (m)-map f:2Z (S"AS™) - 2S™. Then P, [ represents
the Whitehead square

w(ZE) = Pyw(ZS™) = [y, lsg] -
We apply (7.2) again and, using (6.2)-(6.4), obtain

THEOREM (8.5). Let m be even. Then 2w (XE) = 0 if and only if
W,y O XY YIFQ lies in the image of

D: 7t2m+2 (Sm+1) — 7-l"n+2m+1 (Sm+1,) i
where Do = o O Z'Z”J@ — 22%J0 o 2% o,

Here w,,.{ € Ty,41 (S™F 1) denotes the ordinary Whitehead square of
the generator of 7, ; (S™"!). Unless m = 2 or 6 we have w,,; # 0 and
(8.5) determines the order of w (2E). Whenm = 2 or 6 it would be interesting
to know when w (XE) = 0, i.e. when 2E is a Hopf ex-space, but unfortun-
ately our method does not apply.

For some examples where the order of w (2E) is (precisely) 4, consider
the transgression 4:7,(S™) — n,_; SO (m) in the homotopy exact
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sequence of the standard fibration of SO (m+1). Take 0 = A¢, where
peX.m,_(S™ ). Then X£,J0 = 0 and so D is trivial. However it follows
from (4.1) and (6.3) of [6] that

Z*JFQ = [Z*lm:z*qb] *

This Whitehead product is non-zero if, for example, m = n and ¢ = 1,
with m # 2, 6. Of course E is trivial as a bundle, in these examples, although
not as a sectioned bundle.
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