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l'image de n et du noyau de r\2p+1, mentionnée précédemment, découle

l'égalité de l'image de n et du noyau de y]2p+i• En particulier rj2p+1 est un

isomorphisme si et seulement si n est un homomorphisme nul.

Situation générique

Il faut considérer le TCmodule H3 [/]//3, autrement dit le ^-module

quotient
Tor^ K, K)lTori( K,Tor

Il s'agit là du quotient H1 en homologie à la Koszul et un élément t
du quotient de Tor3 par Tor2. To^ est donc représentable par un élément g
facile à expliciter à l'aide d'un système minimal de générateurs mli m2,..., mn

de l'idéal maximal M de l'anneau local A. Ce représentant g a la forme

Z/iiij dmi A dmj 1 < / < j < n

avec la condition usuelle de cycle pour 1 < / < n

Zftj m j 0 1

en posant égal à 0 et gjt égal à ~Hij. Cela étant, avec un anneau B, il
est naturel de considérer la É?-algèbre Bn engendrée par les n(/7+ l)/2
générateurs

xt avec 1 < i < n et yjk avec 1 < / < k < n

et soumise aux n relations pour 1 < / < n

l y..Xj=0 1 n

en posant yu égal à 0 et r/; égal à -ytj. Mais alors l'élément gn

Ey,j dx, A dxj 1 < < j < n

représente un élément important tn du quotient

Torf (B, 5)/Torf (B, B). Torf" (B,

L'homomorphisme utilisé de Bndans est l'unique homomorphisme de
Â-algèbres qui envoie les générateurs et sur 0.

Les B-algèbres Bn et Zn®zBsontisomorphes. Considérons une
résolution simpliciale Pn (Z.)dela Zn-algèbre Z. Comme le Z-module Zn est



— 246 —

libre, le produit tensoriel Pn (Z) ®ZB est une résolution simpliciale Pn (.B)
de la 5/7-algèbre B. Considérons encore les produits tensoriels importants

Rn(Z) Pn (Z ®z„Z et Rn(B) Pn(B) ®BnB

Les iLalgèbres simpliciales Rn (Z)®z B et Rn (B) sont alors isomorphes
de manière élémentaire.

Considérons maintenant l'homomorphisme de l'anneau Zn dans
l'anneau A qui envoie les générateurs xt sur les éléments et les générateurs yjk
sur les éléments gjk. Par nature, cet homomorphisme est appelé à varier.
Au niveau des quotients de Tor3 par Tor2. Toiq, l'homomorphisme
correspondant envoie l'élément générique tn sur l'élément quelconque t donné
initialement. L'homomorphisme de Zn dans A donne un homomorphisme
de Rn (Z) dans R, donc un homomorphisme de Rn (K) dans R, par produit
tensoriel.

En résumé, on a la ^-algèbre simpliciale R qui donne lieu au complexe
cotangent de la Z-algèbre K, avec l'homomorphisme n correspondant, et
la iCalgèbre simpliciale Rn qui donne lieu au complexe cotangent de la

^-algèbre K, avec l'homomorphisme nn correspondant. De plus il existe

un homomorphisme de Rn dans R plaçant finalement tn au-dessus de t et

nn au-dessus de n. En particulier l'homomorphisme n est nul en entier, si

l'homomorphisme 7zn est nul sur l'élément générique. Il reste à préciser quel
est l'élément 7in (tn). On peut localiser Kn sans rien changer, si on le désire.

Enfin dénotons par Mn le noyau de l'homomorphisme de Kn sur K. L'idéal
Mn a n («+1)/2 générateurs, alors que l'idéal Man générateurs.

Conclusion

Considérons une résolution libre et multiplicative Fn de la Ah-algèbre K

et dénotons par Fn le produit tensoriel Fn®Kn K qui permet le calcul de

Tor Kn (K, K). Dans la définition de l'homomorphisme nn, on peut

remplacer les iCalgèbres simpliciales Rn et Rn par les TCalgèbres différentielles

Fn et Fn. L'élément gn appartient alors à Fn®Kn Mn et représente un
élément de l'espace vectoriel

Torf (K, Mn) s Torf (K, K).
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