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A A

image de n et du noyau de #,,.4, mentionnée precédemment, découle
I’égalité de I'image de = et du noyau de #,,, . En particulier #,,,, est un
isomorphisme si et seulement si 7 est un homomorphisme nul.

SITUATION GENERIQUE

Il faut considérer le K-module H; [/]/J;, autrement dit le K-module

quotient
Tord (K, K)/Tor{ (K, K). Tor{ (K, K) .

1l s’agit 1a du quotient H,/H,. H{ en homologie a la Koszul et un élément ¢

du quotient de Tory par Tor,. Tor, est donc représentable par un élément g

facile a expliciter a ’aide d’un systéme minimal de générateurs m,, m,,..., m,

de I'idéal maximal M de I’anneau local 4. Ce représentant g a la forme
Zppdm; Adm; 1 <li<j=<n

avec la condition usuelle de cycle pour 1 << i <{n

2u

en posant u;; €gal a 0 et u;; égal & —p;;. Cela étant, avec un anneau B, il
est naturel de considérer la B-algebre Bn engendrée par les n(n+1)/2 géné-
rateurs

x; avec 1 <<i<{m et y, avec 1 <j <k<n

et soumise aux » relations pour 1 <7 <n
2y;x; =0 I <<j<n

en posant y;; égal a 0 et y;; égal a —y;;. Mais alors ’élément gn
2y;dx; Adx; 1<i<j<n

représente un élément important tn du quotient
Tory" (B, B)/Tor5" (B, B) . Tor?" (B, B) .

L’homomorphisme utilis€é de Bn dans B est 'unique homomorphisme de
B-algebres qui envoie les générateurs x; et y;, sur 0.

Les B-algebres Bn et Zn®,B sont isomorphes. Considérons une réso-
lution simpliciale Pn (Z ) de la Zn-algébre Z. Comme le Z-module Zn est
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libre, le produit tensoriel Pn (Z) ®,B est une résolution simpliciale Pn (B)
de la Bn-algebre B. Considérons encore les produits tensoriels importants

Rn(Z) = Pn(Z) ®,,Z et Rn(B) = Pn(B) ®;, B .

Les B-algebres simpliciales Rn (Z)®, B et Rn (B) sont alors isomorphes
de maniere élémentaire.

Considérons maintenant I’homomorphisme de ’anneau Zn dans I’an-
neau 4 qui envoie les générateurs x; sur les éléments m; et les générateurs y
sur les éléments p;,. Par nature, cet homomorphisme est appelé a varier.
Au niveau des quotients de Tory par Tor,. Tor,;, ’homomorphisme corres-
pondant envoie I’élément générique #n sur I’élément quelconque ¢ donné
initialement. L’homomorphisme de Zn dans 4 donne un homomorphisme
de Rn (Z) dans R, donc un homomorphisme de Rn (K) dans R, par produit
tensoriel.

En résumé, on a la K-algébre simpliciale R qui donne lieu au complexe
cotangent de la A-algébre K, avec 'homomorphisme 7 correspondant, et
la K-algebre simpliciale Rn qui donne lieu au complexe cotangent de la
Kn-algebre K, avec ’homomorphisme nn correspondant. De plus il existe
un homomorphisme de Rn dans R placant finalement 7 au-dessus de ¢ et
nn au-dessus de n. En particulier ’homomorphisme 7 est nul en entier, si
I’homomorphisme nn est nul sur ’élément générique. Il reste a préciser quel
est ’élément nn (tn). On peut localiser Kn sans rien changer, si on le désire.
Enfin dénotons par Mn le noyau de ’homomorphisme de Kn sur K. L.’idéal
Mn a n(n+1)/2 générateurs, alors que I'idéal M a n générateurs.

CONCLUSION

Considérons une résolution libre et multiplicative Fn de la Kn-algébre K

et dénotons par Fn le produit tensoriel Fn® g, K qui permet le calcul de
Tor ¥ (K, K). Dans la définition de 'homomorphisme nn, on peut rem-

placer les K-algébres simpliciales Rn et Rn par les K-algeébres différentielles

Fn et Fn. L’élément gn appartient alors & Fn® g, Mn et représente un élé-
ment de ’espace vectoriel

Tory" (K, Mn) =~ Tory" (K, K) .
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