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We note that the results mentioned above can be extended without any
essential difficulties to superpositions of the form

N

y Pi(xu .,,xn.,1=1

where {pt } are preassigned continuous functions, { qx } are preassigned

smooth functions and {f} are arbitrary continuous functions of one

variable. But as it turns out this does not apply to superpositions of the

form
N

y Pi(xu ,xn)fi(qu(xu....,xn),...,qkti(xu ...,x„)),
1 1

where {pt} are fixed continuous functions of n variables; and

{<7n }> •••> { <7/ct } are fixed smooth functions of n variables (k<n). Fridman
answered that question only for n 3, 4, k 2 and { pt } ^ 1.

Also it is not known to what extent the problem of superpositions of
smooth functions can be reduced to that of linear superpositions. "Such a

reduction is proved only in the case of the so called stable" superpositions
[10]. Tt turns out that not every analytic function of n variables can be

represented by means of superpositions of smooth functions of a smaller
number of variables it is assumed that the scheme is stable, i.e. for a small

perturbation of a function represented the perturbations of the functions
composing the superposition are comparatively small.

Chapter 2. — Superpositions of smooth functions

In this chapter we prove the existence of smooth functions of n variables
(n > 2), not representable by superpositions of smooth functions of a
smaller number of variables.

§ 1. The notion of entropy

We will denote by C (J) the space of all functions defined on a set J
and continuous on J (the norm is the maximum of the absolute value of the
function). We fix a compact Fa C (J) and a positive number e. A set
F* c= C (J) is called an e-net of F if for any fe F there exists /* c F*
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such that (I / - / * Il <e- We denote by Ne (F) the number of elements

of a minimal g-net of F. The number F[£{F) log2 NE (F) is called the

g-entropy of the set F.

The notion of entropy arises in a natural way in connection with various

problems of analysis. We consider an example.
Let / be a function. It is known only that f belongs to a compact F.

For example a smoothness condition of/ and estimates of derivatives are

given. We consider the problem of tabulating the function /. The first part
of the problem is to write down in a table some number (parameters of/).
For example, the values of/ at certain points or the Taylor coefficients of/
can be taken as such parameters. The second part of the problem is to present
a decoding algorithm universal for all /e F which allows / to be calculated

at any point with the accuracy g.

The complexity of a table is usually characterized by two factors—its
volume (the total number of binary digits required to write down all the

parameters of the table) and the complexity of the decoding algorithm.
It is easy to see that the volume of the most economical table presenting/
with the accuracy g equals He (F). Moreover it is possible to characterize the

decoding algorithm too in terms of the entropy [21], [22], [24], [25].

It will be shown in paragraphs 2 and 3 that the number of g-distant
smooth functions depends in an essential way on the number of variables.

This enables us to construct smooth functions of n variables not represent-
able by smooth functions of a smaller number of variables.

We present here estimates of the entropy for a few concrete classes.

1. Let F$ be the class of all real valued functions, defined on a cube

J: { 0 < Xi < 1,1 1, ft } whose partial derivatives of order up to S

are bounded in modulas by a constant C. Then

where C > 0, C" > 0 are independent of g.

2. Let FcPl P2 _ >Pn
be the space of functions analytic on the «-dimensional

cube { - 1 < xk < 1 } (k 1, 2, n) having analytic continuations in the

region Ep Epi x Ep2 x x EPn which are bounded in modulus in this

region by the constant C > 0, where Epk is the region of the complex plane

zk xk + iyk bounded by the ellipse with semi-major axis pk and with foci
at the points - 1, 1 of the real axis (k= 1,2, n). Then



— 269 —

j{ (fc _ n i
log + 0 log-) loglog-

& s(n + 1) * 1 log pk \
3. Let F"fC be the class of real valued functions on the cube { - 1

< xk < 1 } (k= 1, n), bounded in modulus on that cube by the constant

sk and such that their analytic extensions are entire functions of order sk

with respect to zk xk + iyk (k= 1, n). Then

HE (Fns>c) =* ^ fl % (l°o log"
(n +1) î

k =1

\ n+ 1

loa log logO

These estimates and other results connected with estimates of entropy
and applications are to be found for example in [49]-[53].

§ 2. The entropy of the space of smooth functions

Here we give an estimate of the entropy of the class of S times
differentiate functions of n variables. The lower estimate was obtained in [4],
the upper one—in [23].

We fix integers n > 1 and p > 0 and numbers 0 < a < 1, L > 0,

C > 0, p > 0. We will denote by J the cube 0 < xt < p (i 1, n) and

by F FpsfL c (S^p + ot) the set of all real valued functions defined on
such that their partial derivatives of order p satisfy the condition Lip a

with the constant L and

£|/ci +... + kj /(0)

dklxl
< c (X fc; < p)

We say that the function g (x) satisfies the condition Lip a with the constant
L if for any x'and x"

I d (x')- g(x")I< x"))*,
where r (x',x")isthe distance between and

Theorem 2.2.1. If e > 0 is sufficiently small then

/ [\" Is /L\"/sApn[-) < He(F) < Bp'1
S J \ 8y

where A and B are positive constants depending only on s and n.



We choose <5 > 0 such that the number pjb is an integer. We divide

the cube J into cubes Pt 1, 2, ^ by hyperplanes, parallel

to its (n— l)-dimensional edges. Each of the cubes Pt has side of length
b, and the edges of these cubes are parallel to those on </. Let Ct denote
the centre of the cube Pt and St the «-dimensional closed sphere (inscribed

in Pt) of radius <5/2 and centre at the point Cf. Put

<Pi&) <Pi(xi,x2,

0, if x g J — St

A( 1+cos fy r (Ct,x)Yj if xeSi9

where r (Ch x) is the distance from the point x to the centre Ct of the sphere

St. Put, further,
h

%U12 «W Z
i= 1

^tj.= ±1 ; i1,2,h j
Lemma 2.2.1. fLc can find a positive number A (s, L, «), such that when

A A (s, L, «) given any set of numbers (z 1, 2, h)-the
corresponding function (pnim ^ (x) belongs to F.

Proof. By differentiating <pf (x) it is not difficult to see that inside the

sphere its partial derivatives of all orders exist. And the modulus of any
partial derivative of order k is bounded inside St by AB (s, k, n) b~k,

where B (s, k, n) is some constant, depending only on s9 k, n. In particular,
any derivative of the function cpt (x) of order p + 1 is bounded in the sphere

St by the constant

* rifw-p-i A(s, L,n)B(s,p + l,n)
AB (s, p + l,n) ô p-r—

Let g (x) be any p-th order partial derivative of the functions cpt (x). We
take two points a and b belonging to the sphere St. Then g (b) — g (a)

dg (c) dg (c)
r (a, b) where is the derivative of g (x) along the direction

dr dr
(a, b), taken at some point c of [a, b]. Since any p + 1-th order partial
derivative of cpt (x) is bounded inside the sphere by the constant

A (s, L, n) B (s, p-hU n)
we have

Sg (çX

dr

A (s, L, n)B(s,p + 1, n)
n
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And then
dg (c) A (s, L,

I 9 (b) - g (a) | < p —— < pn
A {s, L, n) B(s,p+ l,n)

dr

< panA (5, L, ri) B (s, p + 1, n).
Put

L
A (s, L, /?)

2nB(s, p + l,ri)
Then

I g (b) - fif'(ö)

Now let ¥ (x) be any of the p-th partial derivatives of the function

(Prn,ri2,.-.,tih (*)• We c^oose two points x' and x" of J fix'e St, x" e Sfi
and let g1 (x) and g2 (x) be the partial derivatives of the same kind as

¥ (x) of the functions (pt (x) and (pj (x) (respectively). It is easy to verify
that gl (x) and g2 (x) are continuous on J> and identically equal to zero
on the sets J> — St and J — Sj (respectively). We select some point x0
belonging to the boundary of the sphere St and lying on the segment [xf, x"].
Then

I 00 - (%') I < i g 1 CO - gi CO I + I g2 CO ~ Qi (O I

< I g 1 CO -- g I (O I + I g2 CO - g2 (x0) | < | g (b) - g (a) |

If one of the points x', x" (or both) belongs to the set J — Si9 then we

Lemma 2.2.2. There exists a positive constant A, depending only on
s, L, n such that for sufficiently small s

Proof We choose some positive number k > 1 such that when

< \ L(r CO x0))a + i L (r (x", x0))a < L (r CO x"))a

h

can prove similarly that

I CO - <P (*')I < x")f
Q.E.D.
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We choose two different functions of the type and

(Px1,r2,...,th (A")> ^ A (ß9L, ri)ös and A(s,L,ri) is taken so small that
both functions belong to the family F. Since the functions we have chosen

are assumed to be different, for some i t-l ^ r^. And therefore

I

...,1h
~~ ^Ti,T2,...,T(ci) I

2A 2A (s, L, n) <5S 2/ce > 2e

Hence
n n

fp\n /A(s,L,n)\* 11~
if8(F)> log 2* (Ç) V P

Q.E.D.

<5 / \ k \ s

Lemma 2.2.3. There exists a constant B > 0 such that for sufficiently
small s > 0

11

He(F)<Bp"T

Proof. Let us choose some <5 > 0 such that the ratio p/S is an integer.
In the cube J consider the uniform lattice with step 5, consisting of the

points dt (i — 1, 2, h; h -f 1^ ^

We shall assume the corners of the lattice to be numbered so that the

point dl coincides with the origin of co-ordinates, and for any i

r (dt-:l, d) ô

We now choose some function/ (x) of the family F and we shall show a

method of constructing a table for this function the volume of which is less

/ l\"/s
than Bp11 l-\

Let hp denote the number of different kinds of partial derivative (of all
orders up to and including the 77-th) of a function of n variables. It is not
difficult to verify that hp < (p+ l)n. Let { r{'fe } (T{'fe 0, 1) be the coefficients

of the binary representation of the numbers

dki+k2+"+knf(dl)
dx^dx1^2 ...dxkf

(l<i +/c2 + + kn) < p

written in some order (k is the order of the derivative, j 1, 2, ...,/zi).
Then the numbers
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(k i + k2 + •. • +k„ — /c)

are represented in the table to an accuracy of (5s k, i.e.

binary digits Ti'k / 1, 2, /zf) are sufficient to represent them in binary.

Thus, to represent all partial derivatives of /(x) at the point x dA in

binary we need

Let us assume now that we have found a method for selecting the digits

{ x\,k } (i 1, 2, q- 1) together with a rule for calculating from these

digits the values of the numbers

(I 1, 2, q — 1) to an accuracy of <5s-/c (/< 0, 1, We examine the

subsequent procedure for constructing the table for / (x). Let gk (x) be one

of the /c-th order partial derivatives of / (x). According to the induction
hypothesis, the values of all partial derivatives of order m < p — k of
gk (x) at the point x dq_1 can be calculated to an accuracy of 3s~k~m

(m 0, 1, p — k) from that part of the table already constructed. From
Lagrange's formula, the value of gk (dq) is found sufficiently accurately
from the approximate values of the derivatives of g (x) at dq_l. Therefore,
to represent the numbers gk (dq) to an accuracy of 3s ~k we need only a small
number of binary digits. Since r(dq_l,dq) 3 all the corresponding
coordinates (except one) of the points dq_x, dq are equal. For definiteness,
we shall suppose that

*i (d„) JCi + <5 and xt(dq)

for / 2, 3, n. Then

binary digits
TÏk(j =1,2, /c =0,1,2

p — m — 1

ômgk{dq-ù <5

9k (dc) I dxT
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+
1 S'-kgL(dq.l+eô)

(p — 1) dx[~k

p~k ôm L
_ y g 1/ n c s - k

m=odxT'ml (p — 1)

dm9k(da-i)
where 0 < 0<1. But since — is given by the table only to an

dx\

accuracy of §s~k~m {m — 0, 1, p — k) gk (dq) is determined by the
constructed part of the table only to an accuracy of

P- 1 sm r ss-k ' p-k i r \

Z + —— 5»-* z — + -( —)<e(L + iy-k
m o m! (p — /<) \fI1 0 m (p - k) /

Therefore, in order to represent the value ofgk (dq) in the table to an accuracy
of <5s-fc, it is sufficient to put another hJqk [log ((L +1) e)\ + 1 binary
digits in the table. Hence, to determine the values of all k th order partial
derivatives of /(x) it is sufficient to add hkq < (k + 1)* hJq,k binary digits
to the table (k 0, 1, ...,/?). Thus, the approximate representation of the
values of all partial derivatives of the functions /(x) at the point will use

only

K Z K<(p+ D"+1 (1 +log [e + 1)])
k — 0

binary digits.
The volume of the table T which we have constructed is equal to

* / c \
P(T) « £ V<(p + 1)B+M 1 + log —

+ (h-l)(p + l)" + i (1+log [e (L + 1)]).

We shall now describe the rule we use to enable us to compute the value
of /(x) at any point of the cube J from the parameters of the table. To
do this, we divide the cube J in some way into sets coq (coq 3 dq) the diameter

h

of each set not exceeding ô y/n, and such that ^ /. The approximate
q=l

value of the function/(x) is calculated using the parameters Tjq,k of T in the

following way.
Let x g mq. Then, for the approximate value of /(x) we take

/<*> - s «.,«= n
k\ +/C2 + + kn^p i 1 Ki -
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where akltk, knisthe approximate value (to an accuracy of ô*~k,

ßki + k2+-. +*,)of partial derivative Since e

I f{x)-f * (jc) I < <5S ((p +1 )m + L+1) 0s e'

Therefore,

HAFX (P+1)" + 1 (3+logT) +('i-l)(P + l)" + 1 (1+log (e(L + 1))).

We now define ô in the form

,> V"\B(s,L, n))

We choose k <1 so that the ratio p/ö is an integer. Then

HAH HAF) (p(5+logE)

+ (ft-l)Gp + l)*+1(l+log + 1)))

/f\n/s
i.e. for sufficiently small e Hz (.F) > Bp" | - j where B > 0 is a constant

which can be taken to depend on s, L, n only.

Q.E.D.

Proof of the Theorem 2.2.1. First let L 1. Then from lemmas 2.2.2.
and 2.2.3 we have

/T\,,/s / lV/g
-V(-)

where and B are positive constant, depending only on s and n, since in
this case L 1. But since

He(Fs,i,c) - H8(F)
L L

for sufficiently small 8

L\n,s /'L\n/S
A (s, n) p" - j < He (F) < £ (5, n) pn i- j

Q.E.D.



§ 3. Theorem on superpositions of smooth functions

We will denote by Cs (</") the space of n times differentiate functions
of n variables defined on the cube J>n with the norm

r)kl + - + k"f(x)

Theorem 2.3.1. Let the numbers ^ > 1, > 1 and natural n and n'

n n'
be such that - > — Then the set offunctions from Cs {J>n) not representable

s s'

on Jn by superpositions of S' times differentiate functions of n variables
is a set of second category.

The space Cs (Jn) is complete and consequently the set mentioned in the
theorem is not empty. The theorem is true for any s > 1, / > 1 but we will
assume for simplicity that s and $' are integers.

Lemma 2.3.1. Let f and f be q-fold superpositions composed of the

functions { (Pai,...,ap} and { (p£L
ap > } where all functions composing the

superpositions satisfy the condition Lip 1 with the constant L and for any
collection p, al5 ap

The lemma can easily be proved by induction in q.

Lemma 2.3.2. Let Q be an open subset of Cs(J>n) and Q* a
If every f e Q allows uniform approximations on J>n with any accuracy by

functions from Q*, i.e. the closure of Q* contains Q, then He (Q*) > C

where C > 0 is independent of s.

The lemma is easily reduced to lemma 2.2.1 and lemma 2.2.2.

We denote by Qk the set of all functions of C(Jn) which are /c-fold
superpositions composed of times differentiate functions of n' variables
with partial derivatives bounded by the same constant k.

max I <Pah...,ap - p
I < 8

Then

max I f(x) -f(x) I < (L + \)q s
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Yl 11

Lemma 2.3.3. If- > — then for any natural k the set Qk n Cs (Jn)
s s' '

is nowhere dense in Cs Çfn).

By lemma 2.3.1 and the theorem 2.2.1 for any natural k He(Qk)

/lYh'
< C(-j where C does not depend on s. Hence, it follows from the

inequality - > —7 and lemma 2.3.2 that the set Qk n Cs (</") is nowhere
s s

dense in Cs (>/").
Now to prove the theorem we have to notice only that the set of fu'nc-

GO

tions from Cs («/") representable by superpositions coincides with u (Qk
k= 1

n Cs (>"))• By lemma 2.3.3 the sets { Qk n Cs (Jn) } are nowhere dense and

consequently the set of not representable functions is a set of second

category.

Chapter 3. — Superpositions of continuous functions

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire's theory contains a

minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov's formula.

§ 1. Certain improvements ofKolmogorov's theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube </" can be represented as

2n + i n

f(xu...,xn)y gq( y ))>
q- 1 p- 1

where {cpPA} are specially chosen continuous and monotonie functions
which do not depend onf and where { gq } are continuous functions.

Lorentz [12] has noticed that in the theorem of Kolmogorov the functions

{gq } can be chosen independently of q. In fact, by adding constants
n

to the functions tq £ cpp q (xp) (q= 1, 2n + 1) one can make the ranges
p~1
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