Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 23 (1977)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ON REPRESENTATION OF FUNCTIONS BY MEANS OF
SUPERPOSITIONS AND RELATED TOPICS

Autor: Vitushkin, A. G.

Kapitel: Chapter 2. — Superpositions of smooth functions

DOI: https://doi.org/10.5169/seals-48931

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-48931
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 267 —
We note that the results mentioned above can be extended without any
essential difficulties to superpositions of the form

N

Z Pi(X15 s Xp) [y (C,{i(xla oo xn)) ]

i=1
where { p;} are preassigned continuous functions, { g, } are preassigned
smooth functions and {f;} are arbitrary continuous functions of one
variable. But as it turns out this does not apply to superpositions of the
form

N .
Z pi('xla "'9xn)fi(CI1,i(x13 "'axn)a veey ('Zk,i(xlv "'7xn)) 9
i=1

where {p;} are fixed continuous functions of n variables; and
{4qi}s - { gy, } are fixed smooth functions of n variables (k<n). Fridman
answered that question only for n = 3,4, k = 2 and { p; } = 1.

Also it is not known to what extent the problem of superpositions of
smooth functions can be reduced to that of linear superpositions. “Such a
reduction is proved only in the case of the so called stable” superpositions
[10]. Tt turns out that not every analytic function of n variables can be
represented by means of superpositions of smooth functions of a smaller
number of variables it is assumed that the scheme is stable, i.e. for a small
perturbation of a function represented the perturbations of the functions
composing the superposition are comparatively small.

CHAPTER 2. — SUPERPOSITIONS OF SMOOTH FUNCTIONS

In this chapter we prove the existence of smooth functions of »n variables
(n > 2), not representable by superpositions of smooth functions of a
smaller number of variables.

§ 1. The notion of entropy

We will denote by C (#) the space of all functions defined on a set .#
and continuous on .# (the norm is the maximum of the absolute value of the
function). We fix a compact F < C(#) and a positive number . A set
F* < C(¥) is called an e-net of F if for any fe F there exists f* < F*
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such that {If— f* “ < &. We denote by N, (F) the number of elements
of a minimal e-net of F. The number H, (F) = log, N, (F) is called the
e-entropy of the set F.

The notion of entropy arises in a natural way in connection with various
problems of analysis. We consider an example.

Let f be a function. It is known only that f belongs to a compact F.
For example a smoothness condition of f and estimates of derivatives are
given. We consider the problem of tabulating the function f. The first part
of the problem is to write down in a table some number (parameters of f').
For example, the values of f at certain points or the Taylor coefficients of f
can be taken as such parameters. The second part of the problem is to present
a decoding algorithm universal for all fe F which allows f to be calculated
at any point with the accuracy e.

The complexity of a table is usually characterized by two factors—its
volume (the total number of binary digits required to write down all the
parameters of the table) and the complexity of the decoding algorithm.
It is easy to see that the volume of the most economical table presenting f
with the accuracy ¢ equals H, (F). Moreover it is possible to characterize the
decoding algorithm too in terms of the entropy [21], [22], [24], [25].

It will be shown in paragraphs 2 and 3 that the number of e-distant
smooth functions depends in an essential way on the number of variables.
This enables us to construct smooth functions of » variables not represent-
able by smooth functions of a smaller number of variables.

We present here estimates of the entropy for a few concrete classes.

1. Let Fg be the class of all real valued functions, defined on a cube
J:{0<x;<1,i=1,..,n} whose partial derivatives of order up to S

—~

are bounded in modulas by a constant C. Then

1 n/s A n/s
() <man <o

& &

7

where C’ > 0, C” > 0 are independent of e.

2. LetF,, ... ,, bethespaceof functionsanalytic on the n-dimensional

cube { — 1 <x, <1} (k=1,2, ..., n) having analytic continuations in the
region E, = E, X E,, X .. X E, which are bounded in modulus in this
region by the constant C > 0, where E,, is the region of the complex plane
z, = x, + iy, bounded by the ellipse with semi-major axis p, and with foci
at the points — 1, 1 of the real axis (k=1, 2, ..., n). Then
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1 no 1 1 c n+1 0 (1 c>nl 1 g C‘:]
1. (F, — og — + og- | loglog-|.
He(Forps.pa) (n+1)! kUl log p, 5 g ) gs e

3. Let F!_ be the class of real valued functions on the cube { — 1
< x, <1} (k=1, ..., n), bounded in modulus on that cube by the constant
s, and such that their analytic extensions are entire functions of order s,
with respect to z, = x, + iy, (k=1, ..., n). Then

H F,, 1 ﬁ 1 C n+t1 fl i C>—n
= - 0g-— og log—-1| -
a( .S‘,C) (n+1)!k:>1 Sk g8 ( g8

c n+1 c —-n—1
= () l:(log-> (log log > ] .
> €

These estimates and other results connected with estimates of entropy
and applications are to be found for example in [49]-[53].

§ 2. The entropy of the space of smooth functions

Here we give an estimate of the entropy of the class of S times differ-
entiable functions of n variables. The lower estimate was obtained in [4],
the upper one—in [23].

We fix integers n >1 and p >0 and numbers 0 <o <1, L > 0,
C >0, p > 0. We will denote by .# the cube 0 << x; <p (i=1, ..., n) and
by F= Fg'L . (S=p+a) the set of all real valued functions defined on .#
such that their partial derivatives of order p satisfy the condition Lip «
with the constant L and

1 ak1+...+kn,f(0) n
< e, &
; aklxl . 6knxn = € (lg.l cl = p)

We say that the function g (x) satisfies the condition Lip « with the constant
L if for any x" and x”

g (x") — g (x") | < L(r (x', x"))*,

where r (x’, x”) is the distance between x’ and x”.

THEOREM 2.2.1. If & > 0 s sufficiently small then

L n/s L n/s
Ap" () < H,(F) < Bp" <> ,
& &

where A and B are positive constants depending only on s and n.
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We choose 0 > 0 such that the number p/d is an integer. We divide

the cube .# into <§) cubes P; (z‘ =1,2, .., (g)) by hyperplanes, parallel
o

to its (n—1)-dimensional edges. Each of the cubes P; has side of length
0, and the edges of these cubes are parallel to those on #£. Let C; denote
the centre of the cube P; and S; the n-dimensional closed sphere (inscri-
bed in P;) of radius §/2 and centre at the point C;. Put

( 0, if xef — S,
i = i > Koy veey Xy) = 2 ’ 1
()D (.X) (P (xl xz \') iA(l_l__Cos (_ST_C}/’(CD _X))) lf xES[;

where r (C;, x) is the distance from the point x to the centre C; of the sphere
S;. Put, further,

q0’71,’12,

ceey

h
i (X) = .Zl n; (x)

LEmMMA 2.2.1. We can find a positive number A (s, L, n), such that when
A= A(s,L,n)d° and given any set of numbers n;(i=1,2, ..., h)-the
corresponding function @, .. . (x) belongs to F.

.....

Proof. By differentiating ¢; (x) it is not difficult to see that inside the
sphere S; its partial derivatives of all orders exist. And the modulus of any
partial derivative of order k is bounded inside S; by AB (s, k, n)d ¥,
where B (s, k, n) is some constant, depending only on s, k, n. In particular,
any derivative of the function ¢; (x) of order p + 1 is bounded in the sphere
S; by the constant \

A(s, L,n)B(s,p+1,n)

51—& Co
Let g (x) be any p-th order partial derivative of the functions ¢; (x). We
take two points @ and b belonging to the sphere S;. Then g (b) — ¢g (a)

0 0
= r(a, b) —%(f} , where 9(0)
r

AB(s,p+1,n) 6?71 =

3 is the derivative of g (x) along the direction
r

(a, b), taken at some point ¢ of [a, b]. Since any p + 1-th order partial
derivative of ¢, (x) is bounded inside the sphere by the constant
dg (c),

or

A(s,L,n)B(s,p+1,n)

51—a

A(s, L,n)B(s,p+1,n)
’l ST
él—a

-
.
<3

. we have
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And then
dg () A(s,L,n)B(s,p+1,n)
lg(b) —g(@)| < |p ——| <pn =
- or 5
< p*nd (s, L, n)B(‘s,p—{— 1,n).
Put
As, L) =
B = 2nB(s,p+1,n)"
Then

1
lg(b) —g(a)] < : Lp*.

Now let ¥ (x) be any of the p-th partial derivatives of the function
Pyimg....nn (¥). We choose two points x' and x" of S (x'eS;, x"€S))
and let g, (x) and g, (x) be the partial derivatives of the same kind as
¥ (x) of the functions ¢;(x) and ¢; (x) (respectively). It is easy to verify
that g, (x) and g, (x) are continuous on 4 and identically equal to zero
on the sets & — §; and J — §; (respectively). We select some point x,
belonging to the boundary of the sphere S; and lying on the segment [x’, x"].
Then

W) = ()< 1g9.(x") —g1 (X) ] + [g2(x") — g2 (x") |
< g1 () = g1 (xo) | +192(x") — g2 (x0) | < g (D) — g (a)|
1 1
< 3 L(r(x',xo)* + 3 L (r(x",x0))* < L (r(x',x")* .
h
If one of the points x’, x” (or both) belongs to the set # — ) §,, then we
=1

1l
can prove similarly that

o (x") — @ (x) ] < L(r(x',x")*.
Q.E.D.

LEMMA 2.2.2. There exists a positive constant A, depending only on
s, L, n such that for sufficiently small ¢

' 1 n/s
H,(F) > Ap" <> -
)

Proof. We choose some positive number & > 1 such that when

ke /s
0 = <m) 1S an integer.

/
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We choose two different functions of the type ¢, . .
Ofrg,.itp X), A = A(s,L,n)é° and A (s,L,n) is taken so small that
both functions belong to the family F. Since the functions we have chosen
are assumed to be different, for some i 7; % #5;. And therefore

l ¢n1,n2, wenstth (ci) - (pfl,TZ, .ostn (Ci) ‘
=24 = 24 (s, L,n)o° = 2ke > 2¢.
Hence

n

o (P\ _ (AL 1
Helf) = log 2 ’(5) ’< Tk )"O

LEMMA 2.2.3. There exists a constant B > 0 such that for sufficiently
small ¢ > 0

|3

7]

Q.E.D.

n

H.(F) < Byt ()
&

Proof. Let us choose some 6 > 0 such that the ratio p/o is an integer.
In the cube # consider the uniform lattice with step o, consisting of the

points d; (i =1, 2, ..., h; h = (g + 1> > .

We shall assume the corners of the lattice to be numbered so that the
point d; coincides with the origin of co-ordinates, and for any i

r(di—y,d) = 6.

We now choose some function f(x) of the family F and we shall show a
method of constructing a table for this function the volume of which is less

1 n/s
than By" <_> .
&

Let 4, denote the number of different kinds of partial derivative (of all
orders up to and including the p-th) of a function of n variables. It is not
difficult to verify that 1, <<(p+1)". Let { o } (zJ*=0, 1) be the coefficients

of the binary representation of the numbers
akl +k2+...+knf(d1)
— " (kg +ky ...+ k,) <
dx*1 6x’§2 ... Oxkn (e 2 ) P

written in some order (k is the order of the derivative, j = 1,2, ..., A%).
Then the numbers
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{ak1+kg+...+knf(d1)

Akl A ke oLk
Oxy! 0x3* ... Ox,"

} (ki +ky+...+k, =k)

are represented in the table to an accuracy of 57k ie.

' ¢
By < <[10g 55_;(] + 1) (k+ 1)

binary digits ¥ (j =1, 2, ..., h}) are sufficient to represent them in binary.
Thus, to represent all partial derivatives of f(x) at the point x = d; in
binary we need
p\ ko -/ n+ ¢
hy = Y hy <(p+1) I +log .
k=0 0,
binary digits ’
G =1,2,...,h, k=0,1,2,...,p).

Let us assume now that we have found a method for selecting the digits
{f{”‘} (i=1,2,...,g—1) together with a rule for calculating from these
digits the values of the numbers

ak1+k2+...+kn di i
{‘mx?—-j;%f:)} (ky +ky,+...+k,=k)

(i=1,2,..,g—1) to an accuracy of * % (k=0, 1, ..., p). We examine the
subsequent procedure for constructing the table for f(x). Let g, (x) be one
of the k-th order partial derivatives of f(x). According to the induction
hypothesis, the values of all partial derivatives of order m <p — k of
g, (x) at the point x = d,_; can be calculated to an accuracy of oS ~k—m
(m=0,1, ..., p—k) from that part of the table already constructed. From
Lagrange’s formula, the value of g, (d,) is found sufficiently accurately
from the approximate values of the derivatives of g (x) at d,_. Therefore,
to represent the numbers g, (d,) to an accuracy of 5°~* we need only a small
number of binary digits. Since r(d,_{, d,) = ¢ all the corresponding co-
ordinates (except one) of the points d,_,, d, are equal. For definiteness,
we shall suppose that

Xy (d) = x;(dy—y) + 0 and x;,(d) = x;(d,_,)

for i = 2,3, ..., n. Then

p—m—1 om d 5
gi(d, 1)
geld) = 3, guldy-y)

m=0 6x'1" m !
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1 07 g, (dy—y +09)

+— 6Pk
(p—1)! oxf "
p—k om d 5m
_ Z gk(mq 1) . R Hés_k ’
m=0 axl m ! (p—l)'
| o"g, (d, | |
where 0 < 0 < 1. But since ——-g—k(—nf———l—)is given by the table only to an
X1

accuracy of *7*" ™ (m=0, 1, ..., p—k) g, (d,) is determined by the cons-
tructed part of the table only to an accuracy of

p—1 a‘m Lés—k +p—k 1

L
5S Thk—m — 53k 4 ij <e(L+1 s—k
P ml T (=l (ZO 1 (k) ST

Therefore, in order to represent the value of g, (d,) in the table to an accuracy

of 6°7%, it is sufficient to put another 4)* = [log (L +1)¢)] + 1 binary
digits in the table. Hence, to determine the values of all k th order partial
derivatives of f(x) it is sufficient to add At < (k-+1)" A" binary digits
to the table (k=0, 1, ..., p). Thus, the approximate representation of the
values of all partial derivatives of the functions f(x) at the point will use
only .

p

h, = kZo hy < (p+ 1" (1 +log [e(L +1)])
binary digits.
The volume of the table T which we have -constructed is equal to

/

k X
C
P(T) = ¥ hy < (p+1)+! <1+log 5)
g=1

+ (=D (p+1)"" (1 +log [e(L+1)]).

We shall now describe the rule we use to enable us to compute the value
of f(x) at any point of the cube 4 from the parameters of the table. To
do this, we divide the cube .# in some way into sets w, (o, 3 d,) the diameter

h
of each set not exceeding 9 \/;, and such that ), w, = . The approximate
g=1

value of the function f'(x) is calculated using the parameters ré’k of T in the
following way. :
Let x € w,. Then, for the approximate value of f(x) we take

1 .. —x. (d))ki
f*(x) = Z Oy ko, .. kn H Grs =i { q))

ky+kg+...+k,=p i=1 k; !

[T e o e T TR
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where a;, .

.....

«, 1s the approximate value (to an accuracy of K k=5 ky
=1

5k1+k9+ +knf( )
q

X oxk2 L oxkn

Hf(x) f*(x) “ < (p+D"+L+1) = B(s,L,n)o* = ¢".

of partial derivative

Since f(x) e FF

Therefore,
H,(F)< (p+1y*! (1 —Hogé) +h-D(p+1)H! (1 +log (e(L + ]))).

We now define o in the form

p ke 1/s
- o)

We choose k < 1 so that the ratio p/d is an integer. Then

H (F)y<<H,(F)<(p+1)y*! <l+log§;>

+ (h=1)(p+ 1" (1 +log (e(L+1))),

\ n/s

i.e. for sufficiently small ¢ H, (F) > Bp" (—> , Where B > 0 is a constant
\ 8

which can be taken to depend on s, L, n only.

Q.E.D.

Proof of the Theorem 2.2.1. First let L = 1. Then from lemmas 2.2.2.
and 2.2.3 we have

nls

nls ;
Ap" () < H,(F) < Bp"( )
X3 &

where 4 and B are positive constant, depending only on s and #, since in
this case L = 1. But since

Hs(Fs,1,c) = Ha(F)

L L
for sufficiently small ¢

AL s
A (s, n) p" <§> << H,(F) < B(s, n)p" ()
/ &€

/

Q.E.D.
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§ 3. Theorem on superpositions of smooth functions

We will denote by C, (#") the space of n times differentiable functions
of n variables defined on the cube .#" with the norm

' s ak1+...+knf(x)
= 2 T, ™| G o

p=1 ki+ko+ ..+kp,=p xegn

/

THEOREM 2.3.1. Let the numbers s > 1, s" > 1 and natural n and n’

/

non
be such that — > — . Then the set of functions from C (F") not representable
s s

on J" by superpositions of S’ times differentiable functions of n’ variables
is a set of second category.

The space C, (#") is complete and consequently the set mentioned in the
theorem is not empty. The theorem is true for any s > 1, s" > 1 but we will
assume for simplicity that s and s" are integers.

LemMA 2.3.1. Let f and f' be g-fold superpositions composed of the

functions { ¢}, }oand { g,

,...,ap

,,,,, ap > } where all functions composing the
superpositions satisfy the condition Lip 1 with the constant L and for any

collection p, oy, ..., o,

< &

max I (pa]’,,_,ap - @al,...ap
Then

max | f(x) —f() | < (L+1)7
xegn

The lemma can easily be proved by induction in g.

Lemma 2.3.2. Let Q be an open subset of C,(F") and Q* < C(S").

If every fe Q allows uniform approximations on #" with any accuracy by
n/s

functions from Q*, i.e. the closure of Q* contains 2, then H, (Q*) >C <—> ;
e

where C > 0 is independent of e.

The lemma is easily reduced to lemma 2.2.1 and lemma 2.2.2.

We denote by Q, the set of all functions of C(#") which are k-fold
superpositions composed of s times differentiable functions of »’ variables
with partial derivatives bounded by the same constant k.

A - e
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!/

LEMMA 2.3.3. ]fE > n—, then for any natural k the set Q0 C (F")
s S

is nowhere dense in Cg (S").
By lemma 2.3.1 and the theorem 2.2.1 for any natural k H,(2,)

n'/s’
< C(—) , where C does not depend on ¢. Hence, it follows from the
€

n n' ' ,
inequality — > — and lemma 2.3.2 that the set Q, n C, (/") is nowhere
s S

dense in C, (S").
Now to prove the theorem we have to notice only that the set of func-

o8]

tions from C, (#") representable by superpositions coincides with U (£,
k=1

N C; (A"). By lemma 2.3.3 the sets {Q.n Cy(F") } are nowhere dense and
consequently the set of not representable functions is a set of second cat-

egory.

CHAPTER 3. — SUPERPOSITIONS OF CONTINUOUS FUNCTIONS

In this chapter we present the proof of the theorem of Kolmogorov
given by Kahane [36]. This proof which is based on Baire’s theory contains a
minimum of concrete constructions and shows that there exists a wide
choice of inner functions for Kolmogorov’s formula.

§ 1. Certain improvements of Kolmogorov’s theorem

By the theorem of Kolmogorov any function defined and continuous
on the cube #" can be represented as

2n+1

f(xla"‘bxn) - Z gq( q)p,q(xp)):
qg=1 p=1

where {¢,,} are specially chosen continuous and monotonic functions

which do not depend on £, and where { g, } are continuous functions.
Lorentz [12] has noticed that in the theorem of Kolmogorov the func-

tions { g, } can be chosen independently of ¢. In fact, by adding constants

n

to the functions 7, = ) ®,4(x,) (=1, .., 2n+1) one can make the ranges
p=1
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