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JA are independent of /; we denote this ideal by JA. The hypothesis says
that for large i

deg(CxI)
e (JA ä 7-77— codim yl

(n + 1) (/î (L1) — r — 1)

(r +1) deg XdegL®' ^~
(n + 1) (deg L®' — gr + 1) — r — 1

and letting z -> oo,

e
+ £
n + 1

J O

But C x X along p x X is formally isomorphic to A1 x I along 0 x X
with corresponding J 'A s, so by Theorem 2.9., X is Chow-semi-stable.

§ 3. Effect of Singular Points on Stability

We begin with an application of Theorem 2.9.

Proposition 3.1. Let X1 cz Pn be a curve with no embedded components
such that deg X/n + 1 < 8/7. If X is Chow-semi-stable, then X has at
most ordinary double points.

Remarks, i) When n 2, degJT/zz + l < 8/7 deg X < 4 and the

proposition confirms what we have seen in 1.10 and 1.11

ii) Suppose L is ample on l1 and Xm c i$ the embedding of X
defined by T (X,L®m). By Riemann-Roch, deg XJN(m) -» 1 as m -» oo, hence :

Corollary 3.2. v4zz asymptotically stable curve X has at most ordinary
double points.

In particular, if X a P2 has degree ^ 4 and has one ordinary cusp,
then, in P2, X is stable but when re-embedded in high enough space, X is

unstable! The fact that this surprising flip happens was discovered by
D. Gieseker and came as an amazing revelation to me, as I had previously
assumed without proof the opposite.

iii) We will see in Proposition 3.14 that the constant 8/7 is best possible.

Proofof3.1. We note first that a semi-stable X of any dimension cannot
be contained in a hyperplane : if X a V (X0), then X has only positive
weights with respect to the 1-PS
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m
0

The plan is clear: by Theorem 2.9, it suffices to show that if x is a bad

singularity of X,then there is a 1-PS.

2(0

such that

tpo
0

0 tPn

I Pi>—TT LPi-7 i=0 +1) ; o

First, if x e X has multiplicity at least three, then take coordinates

t

(X0,..., Xn) so that x (1, 0,..., 0) and let X(t)

1

Then

1

s &A1XX(1) is generated by {tX0, }. Since { X„ }
generate JiXiX and X0 is a unit at x, J (t, @A1 xX, i.e. J is the maximal
ideal of (0, x) on A1 x X. Therefore, e {J) mult(0)X) (A1 xj) mult,, X

n

^ 3, which does what we want since 16/7 Y Pi 16/7 < 3.

Now if x g F is a non-ordinary double point—i.e. a double point whose

tangent cone is reduced to a single line—then dim ' x,Xr x) 2 and

I 3 where I is the ideal of the tangent cone at x. Choose
coordinates (X0, Xn) such that

i) X0 (x) * 0

ii) v =* XJX0 and u X2/X0 span «

iii) ue I so that w2 g

iv) X3IX0,...,XJX0eJt2XiX

vx,xh 'fix
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Then if l(t) the associated ideal is

1

J (t4X0, t2Xu tX2, X3,..., Xn). But (PAixX// is supported only at the

point (0, x) hence e {/) is again Hilbert-Samuel multiplicity and is at least

equal to the multiplicity of the possibly larger ideal J' (t4, t2v, tu, Ji^>x).
If / is the ideal (t4, then since

(it2v)2 t4v2el2
(tu)4 t4 (u2)2 e t4 (JIX2x)2 cz I4 by iii)

J' is integral over /. Hence

e{J) ^e(J') e (I) (4) (2). e (^X>x) 16 ~ £ Pi
' i=o

as required.
The attempt to systematize this theorem leads to a numerical measure

of the degree of singularity of a point. The results that follow are part of
a joint investigation of this concept by D. Eisenbud and myself. Full proofs
will appear later. Many of these results have also been discovered
independently by Jayant Shah.

Definition 3.3. If (9 is an equi-characteristic x) local ring of dimension

r, and k ^ 0 is an integer, then we define ek (0), the kth flat multiplicity
of (9, by

e(I)
e0 ((9) sup / of finite colength in

(r col(I)
ek ((9) e0 ((9 [[tu /J])

A A

It is obvious that if (9 is the completion of then ek ((9) ek ((9).

Proposition 3.4. ek (0) ^ max (1, e ((9)j(r + k)

3) The hypothesis on Q can be avoided, and the proof simplified, by a use of the
associated graded ring instead of the Borel fixed point theorem (D. Eisenbud).
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Proof. The second bound is obvious. To get the first note that if J
e (J) rf

is any ideal of finite colength then e (/") nr e (J) and col (,Jn) - ——

+ O (f'1), hence

e(J")
» 1 as n -> oo

r col (J")

To get an upper bound on ek we first obtain another lower bound

Proposition 3.5. e0 ((9) ^ e0 ((.V [[/]]); moreover if r dim (9 > 0

and there is equality, then the sup defining e0 ((9 [[/]]) is not attained. Hence

e0((9)^ei (0)^e2(0) ^ Ht 1

Proof. We begin by giving a lemma which is useful in the applications of
e0 as well.

00

Lemma 3.6. Let J> be the set of ideals of (9 [[r]] of theform I © 1\ t \
i= o

where I\ is an increasing sequence of ideals offinite colength in (9 such that

IN — (9 for some N. Then

e (I)
Co (0 [[*]]) sup —rTnlEjf col (/)

Proof. For any equi-characteristic local ring R, let Hilb'jj be the
subscheme of the Grassmanian of codimension n subspaces of RjJ/nR

parametrizing those subspaces which are ideals: since any ideal in R of
colength n contains J/nR, Hilb7^ parameterizes these ideals. Let e: Hilb'^
-> Z be the map assigning to an ideal its multiplicity. By results of Teissier
and Lejeune [23], e is upper-semi-continuous.

The natural Gm-action on (9 [[£]] by t -> At induces a Gm-action on
Hilb^[[n]. By the Borel fixed point theorem, there is, for every I, an ideal
fixed by this action in 0Gm (/). Such an ideal must, by the upper-semi-
continuity of multiplicity have multiplicity at least as large as e (/). Thus,
to compute e0 ((9 [[*]]) it suffices to look at Gm-fixed ideals of finite colength
and J is just the set of such ideals.

00

Fix I ® ft1, where 70 cz f a c= IN (9 is an increasing sequence
i 0

N-1
of ideals in (9. Clearly col (/) ^ col (If To bound e (I) we note that

i 0
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/« (js).©(/S-1M ©(/r2'?f2) ©- ®(i0ir1t"-1) ©

©(/^") ©(/r1/^1) © ©(/v 2/vi'(,v "" ') <

(3.7) ©(/"w_1f<N-1)") t*"-1»*1) ©

©(cf^") ©...
=>/"= (75 © Jo < ©... ©/Sf'""1) @(Jîr" ©... ©

t(N~l)n®rNz\t(N~1)n+1©.... ®iN^lLtNn~1)

®<StN"®...
Hence,

col (7") ^ £ n col (7") + £ col (7Î_j)
7=0 j l
Mr+1 N— 2 nr+1

£ eW + rr^v7e^-i) + OK)
r / o ('•+!)!

(We have evaluated the second sum by "integration"!)
Finally

N — 2 N-l
/TN (r + l) Z e(Ii) + ^ (Fjv-l) Z e(^i)

£ bU ^ 7 0 ^i 0

(r +1) col (/) v wo iv1 im(r + 1) Z col (If) r Z co1 CO
1 0 7 0

with strict inequality if r > 0

*CO
max ^ c0 (G)

I r! col (I,)

Corollary 3.8. If G is regular, e0{G) 1 and if r > 1, the defining

sup is not attained.

Corollary 3.9. (Lech x). For all G and all 1 a G, e (I) ^ r e (G)

col (7), hence e0 (G) ^ e (G).

Proof None of the quantities involved change if we complete G.

But after doing this, we can write G as a finite module over G0

k [[tu tr]] so that:

(*) There is a sub C0-module ^ $ such that the quotient G/G0 is an

C0-torsion module M.

]) Cf. [13], Theorem 3.
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Let I0 I n 00. Then col (/) ^ col (70) and

dim ((9/1") ^ dim (9/Iq (9

^dim (M/JS M) + dim(ffS(<P)//S 0CÏ*})

Condition (*) implies that dim (Mjln0 M) is represented by a polynomial

of degree less than r, hence

e (/) ^ e (0) e (/0)

^r \ e {(9) col (70) by Corollary 3.8

^r\e((9) col (/)

We state two other useful properties of ek:

Proposition 3.10. i) If (9 and (9' are local domains with the same

fraction field and (9' is integral over (9, then ek {(9') ^ ek {&).

ii) If (9 (k [[t]] + l?) is an augmented k [[t]]-algebra, let (9n 0^»,

a local ring with residue field k ((/)) and let (9S (9jt(9 be its specialization

over k; then ek (0n) X ek (ßs).

We come now to the main definitions.

Definition 3.11. (9 is semi-stable if e1 ((9) 1 ; (9 is stable if in

addition, the defining sup is not attained.

This terminology is justified by the following proposition which shows

that the semi-stability of the local rings on a variety X is just the local

impact of the global condition of asymptotic semi-stability for X.

Proposition 3.12. Fix a variety X\ an ample line bundle L (9X{D)
on X, and p e X. Then if (9p>x is unstable, (X, L) is asymptotically
unstable.

Proof Choose an ideal / c (9p>x [[*]] such that

i) e (/) (1 +e) (r+ 1) col (/), s > 0

00

ii) I — © fit1, I0 c= f a c= IN (9P}X a sequence of ideals of
i 0

finite colength. (This is possible because of Lemma 3.6).

$ Let <Pm denote the projective embedding of X by T (X, L®m). Choose m
s large enough that
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a) for all Qe X,T(Xr,Lm) *
-,T( Lm/I0J?Q>X Lm) is surjective

b) Lm is very ample

x ,n, 1 mr{Dr) 1 deg &m (X)
c) h° (X, Lm) > —- 6 mV ;

1+8 r 1+e r

(That the last condition can always be realized is a consequence
of Riemann-Roch for X.)
Next choose a basis XUj, 0 £= i ^ N, of r (X, Lm) such that

X0tj is a basis of i/z-1 (70),

Xlyj is a basis of \j/~l (I0),

is a basis of F (X, Lm)/^_1 (Z^),
Finally, let X be the 1-PS which multiplies Xitj by tl : i.e. in the form of
(2.8) p(l'j) z; then by assumption (a) the ideal «/ corresponding to
2 in (2.8) is just I and is supported at the single point (0, p) e A1 x X.
Moreover, by condition a)

X />"•» IV dim ((?//„_!) + (IV -1) dim (h-Jh-2)
l,i + + 2dim(/2//!) + dim/i/fo col

(This is Lemma 2.14 again). Hence,

e{S) e(I)
(1 +e). (r +1) col (f)

ri ^ / i\ deg v 'xi+".(r+" •(1+8)ft,(I.)T^'J'
(r +1) deg (A-) ^ (iJ)

(Lm)

By Theorem 2.9, (X) is unstable.

Restating Corollary 3.7 gives us a trivial class of stable points:

Proposition 3.13. If (9 is regular and ofpositive dimension it is stable.

The next step is to pindown the meaning of semi-stability for small

dimensional local rings. For dimension 1, we can be quite explicit:
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Proposition 3.14. If dim (9 1 and (9 is Cohen-Macauley (i.e.

Spec (9 has no embedded components), then :

i) (9 stable <=> (9 regular o e {(9) e0 ((9) ei ((9) — 1.

ii) 0 semi-stable but not stable o (9 an ordinary double point o e {(9)

- e0(G) - 2, ^(0) e2((P) - 1.

iii) § a higher double point => ex (0) ^ 8/7.

iv) (9 a triple point or higher multiplicity => et (0) ïfe 3/2.

Proof If (9 is a triple or higher point, so is (9 [[/]], hence e ((9 [[/]])
3, and by Proposition 3.4, e1 (0) e0 ((9 [[*]]) 3/2.
As for Cohen-Macaulay double points, when char. ^ 2 these are all

A A

of the form (9 k [[x, y]]/(x2 ~yn), 2 ^9n ^9 oo. (Think of (9 as a quadratic
free k [[y]]-algebra; the argument can be readily adapted to char. 2 also).

If n2^3, then in k [[x, y, t]]/(x2/= (x2, xy, y2, xt, yt2, t4).
(This, of course, is the ideal of Proposition 3.1 again). I has complementary
basis (1, x, y, t, yt, t2, t3), hence col (/) 7. I claim e (I) 16, which
will imply iii). We first note that I is integral over (y2, tA). We compute the

multiplicity of (y2, t4) as

intersection-multiplicity at M ((Spec (9) (y2 0) (/4 0))

8 intersection-multiplicity ((Spec (9) (y 0) (£

16

since (9 is a double point.
When (9 is an ordinary double point, I claim e0 ((9 [[/]]) 1. Since this

e (JT) 2
value is attained by the maximal ideal JI : - 1 this will

2 col (M) 2

prove ii), hence i) in view of Proposition 3.13.

In general, if (9 k [[x, y]]/(x y), an ideal I cz (9 [[*]] corresponds to
a pair of ideals J c k [[x, t]] and K cz k [[y, t]] such that J + (x)/(x) and
K + (y)/(y) have the same image, say (tn), in k [[r]]. A rough picture is

given below: the condition on the two ideals ensures that they glue along
the intersection of the two planes.
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Lemma 3.15. If I c £ [[x, 7]] / + (x) (x, ya), then e{I)
2 col (I) - a.

Proof By applying Lemma 3.6, we can reduce to the case where /
is generated by monomials:

00

I - © (/'. x1).k[[y]]with ar0ïâ^ ^ 0.
1=0

Then as n (3.7):

In ZD (ynro)k ®(yn~1)ro + r^x)k ® (y{n~2)ro+2r^x2) k ©

© (.ynrixn) k © (y(»-i)n + r2xn + i) k 0 @ fe @

n (n +1) 9 9 9
=> col (/") r0 + nzr1 + nzr2 + + ^ Lv-i

e (I) r0 a
=> ___ ^ _ -I- Tl -I- + rN_1 col (/)--.

Remark. If / c (9 [[t]\ is of the form of Lemma 3.6, the expansion
(3.7) for 7n, which we have used again here, can be used to give even better



bounds for e (/). To get these however, requires the more involved theory

of mixed multiplicities which will be discussed in § 4.

The meaning of semi-stability for two dimensional singularities is not

yet completely worked out, but what follows gives a good overview of the

situation.

Definition 3.16. If (9 is a normal 2-dimensional local ring, x is the

closed point of Spec (9, and X* —-—> Spec 0 is a resolution of (9 (i.e. %

is proper and birational), then we define

i) big genus of (9 dim R1 n% {(9xf)
(R1n% is a torsion (9-module supported at x)

ii) little genus of (9 — sup (pa (0Z)), where Z runs over the effective cycles

on 7i ~1 (x).

Wagreich [24] has shown that big genus little genus—hence the names—
and Artin [3] has shown that if the little genus is zero then so is the big
genus. (But when little genus 1, big genus may be > 1). We call (9:

rational (resp. strongly elliptic) if its big genus is 0 (resp. 1), and weakly
elliptic if its little genus is 1.

If there is to be any hope of constructing compact moduli spaces for
semi-stable surfaces, the non-normal singularity xyz 0 must be semi-
stable—in fact, it is. But xyz 0 is the cone over a plane triangle so the

singularities of surfaces will be a limited class of rational and strongly
elliptic normal singularities and their non-normal limits.

We now list without proof some classes of semi-stable singularities.

triple point on it is really a

degenerate "elliptic" singularity.
In fact, xyz — 0 is a limit of
the family of non-singular cubics

xyz + t(x3+y3 + z3) 0. Similarly,

the standard singularities
An_t: xy zn and Dn: x2=y2z
+ zn have non-normal limits xy

0 and x2 j2z respectively
as n -> oo. We can summarize
these considerations in the
heuristic conjecture: the semi-stable
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3.17. Elliptic polygonal cones. In P"-1 take a generic n-gon
n

u PiPi+i (Po^Pn + i) and the cone in Cn over it. This is a union of
i 0

«-planes crossing normally in pairs and meeting at an n-fold point at the

origin. We also allow the degenerate cases n 2 (local equation x2=y2z2)
and n 1 (local equation x2=y2 (y + z2)) which correspond respectively, to
glueing two planes to each other along a pair of transversal lines, and to
glueing a pair of transversal lines in a plane together as shown below.

Proposition 3.18. Elliptic polygonal n-cones are semi-stable if and

only if 1 ^ n ^ 6. Moreover, all small deformations of these singularities
are semi-stable.

Examples of such singularities are:

i) Cone over a smooth elliptic curve with generic j in P'1, 3 ^ ^ 5.

(In fact, I expect this holds for arbitrary j). These are also called the

simple elliptic (Saito) or parabolic (Arnold) singularities, and may be
CO

described as © F (.E, Lm) where E is an elliptic curve and L is a line
m 0

bundle of positive degree n : with this description, they are also defined

for n 1,2. For small /?, these have the form

x2 + y3 + z6 + a (y2z2) =0 (n 1),
x2 + y4 + z4 + a (y2z2) 0 (n 2)

x3 + y3 + z3 + a (xyz) =0 (n 3)

ii) The hyperbolic singularities of Arnold:
1 1 1

xyz + xn + ym + zp 0 - + — + - < 1

n m p

iii) Rational double points.

iv) Pinch points: these have local equation x2 y2z.
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3.18. Rational polygonal cones. In P" 1 take (n- 1) generic line

segments P0 Px u P1 P2 -• u Pn-\K and in take the cone over them:

one obtains (n — 2) planes crossing normally in («—1) lines.

Proposition 3.19. Rational polygonal n-cones are semi-stable if and

only if 2 ^ n ^ 6. Hence, all small deformations of these singularities are

semi-stable.

A typical singularity which arises in this way is the cone over a rational
normal curve in P"-1, 2 ^ n ^6.

7 ~

By applying the semi-stability condition to the ideal I — © tl~j (Z-7)

j o

c ^ [[/]], where I is an ideal in (9 and ~ denotes integral closure in 0,
one can prove the following necessary condition for semi-stability:

Proposition 3.19. If (9r is semi-stable, I c (9 and P (/) dim (0/(1%
then

e (/) ir+i
P( 1) + +P(i) ^

(r +1)

When r 2, and is Cohen-Macaulay this reduces us to ten basic

types of singularities. In the first few cases we have listed the singularities
of this type which are actually semi-stable.

1) Regular points: always stable.

2) Double coverings of C2 with branch curve of multiplicity psS 4: semi-
stable here are,

a) rational double points and their non-normal limits xy 0,

x y2z,

b) hyperbolic double points,

c) parabolic double points.

3) Triple points in C3: Semi-stable are,

a) cones over non-singular elliptic curves,

b) hyperbolic triple points.

4-5) Triple and quadruple points in C4.

6-7) Quadruple and quintuple points in C5.

8-9) Quintuple and sextuple points in C6.

10) Sextuple points in C7.
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Remark. With Eisenbud, we made some computations by computor
to eliminate cases; the computer came up with some amusing examples.
For instance it found an ideal / in k [[x, y, z, t]\/(x2 +y3 + z7) with col (/)

63,398, mult (/) 381,024, showing that e0 ^ 1.000167, hence that
the singularity x2 + y3 + z7 0 is unstable.

Further restrictions, confirming the heuristic conjecture, on what
singularities are semi-stable are provided by:

Proposition 3.20. If (9 is normal and semi-stable then (9 is rational
or weakly elliptic. Moreover, there are no cuspidal curves, i.e. generically
all singular curves are ordinary.

We omit the proof except to note that the last statement comes from the
observation that for large n the choices In (T9, u9n, v9n) ~ show that
c2 (k [[T2, T3]]) ^ 1 + 22/221

Now suppose (9 is not Cohen-Macaulay. We can create a slew

of stable $'s using i) of Proposition 3.10. For example if k [[x, >']]
(9 => k [[x, xy, y2]], then (9 is semi-stable since the ring on the right which

is the pinch point is semi-stable; a typical example is (9 k [[x, xy, y2, y3]],
a very partial pinch in which only the y-tangent has been removed.
Fortunately most of these points cannot appear as singularities of varieties on
boundary of moduli spaces as they have no smooth deformations. More
precisely, (cf. [27]):

Theorem 3.21. If (9 is a 2-dimensional local ring which is not Cohen-

Mcicauley such that (9 (9rjt(9' where (9' is a normal 3-dimensional local

ring ; let (9novm be its normalization and (9 {a e (9novm | for some n, JinQ a

c •

Then i) (9 is a local ring

ii) If in addition (9 has characteristic 0, then

dim ((9/(9) ^ big genus of (9.

Remark. If, as seems likely, in view of Proposition 3.20 the big genus

of the Cohen-Macaulay ring (9 is 0 or 1, this means that (9 must be nearly
Cohen-Macauley.

We conclude this section by outlining an as yet completely uninvestigated

approach to deciding which singularities should be allowed on the

objects of a moduli space.
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Definition 3.22. (9r is an insignificant limit singularity if, whenever (9

is an (r+ 1) dimensional local ring such that (9 (9'\i& for some t e (9',

n : X Spec & is a resolution of Spec (9' and E a X is an exceptional

divisor (i.e. dim tz (E) < dimE), then E is birationally ruled, that is,

the function field of E is a purely transcendental extension of a proper sub-

field. Equivalently, setting (9jJfQ k, this says that whenever R is a

discrete rank 1 valuation ring containing & with tr deg.kR/JtR r,
then R/J/r K(t), for some K such that tr. deg.kK r — 1.

Examples. 1) xy 0 is insignificant because on deforming this only
An singularities arise.

2) x2 + y3 0 is significant because the deformation t6 x2 + y3

blows up to a non-singular elliptic curve with (E2) - 1. Similarly
I can show that all higher plane curve singularities are significant.

3) x3 + y3 + y4 - 0 is significant because t12 x3 + y3 + y4 blows

up to a 3-fold containing a K3 surface.

4) Jayant Shah [26] has proven that rational double points and Arnold's
parabolic and hyperbolic singularities are insignificant. As a limiting
case, normal crossings xyz 0 is insignificant.

Remarks. 1) Why should birational ruling of exceptional divisors be

the right criterion for insignificance The reason is that all exceptional
divisors which arise from blow-ups of non-singular points are birationally
ruled and all birationally ruled varieties arise in this way. So on the one

hand, such exceptional divisors must be permitted, and on the other, the

examples suggest that sufficiently tame singularities cannot "swallow"
anything else.

2) The examples suggest that (9 semi-stable and (9 insignificant are closely
related. For instance, perhaps these are the same when embedding-dirn (9

1. In dim 2 for example, after hyperbolic and parabolic singularities in
the Dolgacev-Arnold list [2, 7] of 2-dimensional singularities come 31 special
singularities. These are all unstable and in a recent letter to me Dolgacev
remarks that all of these have deformations which blow up to K3 surfaces

as in Example 3. If semi-stability and insignificance turn out to be roughly
the same in arbitrary dimension, we would have a very powerful tool to
apply to moduli problems.
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