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# 4 are independent of i; we denote this ideal by £ 4. The hypothesis says
that for large i

e(s) = GBCXX) imA
(n+ 1) (R° (LY —r —1)
(r+1)deg X deg L®"

-Zpl

T (1) (deg L —g+1) —r—1 5

and letting i —» o0,
(r+1)degX

e(J ) =
(S ) i1 2

P
0

But C x X along p x X is formally isomorphic to A’ x X along 0 x X
with corresponding .# ; s, so by Theorem 2.9., X is Chow-semi-stable.

§ 3. EFFECT OF SINGULAR POINTS ON STABILITY

We begin with an application of Theorem 2.9.

PROPOSITION 3.1.  Let X' < P" be a curve with no embedded components
such that deg X/n+1 < 8/7. If X is Chow-semi-stable, then X has at
most ordinary double points.

REMARKS. 1) When n = 2, deg X/n+1 < 8/7 <> deg X < 4 and the
proposition confirms what we have seen in 1.10 and 1.11

ii) Suppose L is ample on X' and X,, = PY™ is the embedding of X
defined by I' (X, L®™). By Riemann-Roch, deg X,/ N(m) — 1 as m — oo, hence:

COROLLARY 3.2. An asymptotically stable curve X has at most ordinary
double points.

In particular, if X < P? has degree =4 and has one ordinary cusp,
then, in P2, X is stable but when re-embedded in high enough space, X is
unstable! The fact that this surprising flip happens was discovered by
D. Gieseker and came as an amazing revelation to me, as I had previously
assumed without proof the opposite.

ii1) We will see in Proposition 3.14 that the constant 8/7 is best possible.
Proofof3.1. We note first that a semi-stable X of any dimension cannot

be contained in a hyperplane: if X = V' (X,), then X has only positive
weights with respect to the 1-PS
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P't—n 0

A(t) =

0 t

The plan is clear: by Theorem 2.9, it suffices to show that if x is a bad
singularity of X, then there is a 1-PS.

— —1

tP0 0
At) =
0 | |
such that 1 )
e(S) = 1—76 i;{) p; > deg()’i +(;)+ D i;) p; -

First, if x € X has multiplicity at least three, then take coordinates

t

(X,, ..., X,,) so that x = (1,0, ...,0) and let A(¢) = ' Then

1
F . Opxx(1) is generated by {1X,, Xy,.., X,}. Since {Xy,.., X,}
generate /4, y and Xy isaunitat x, S = (£, #,) Op4 «x, 1.€. F is the maximal
ideal of (0, x) on A* x X. Therefore, e () = mult, , (A" x X) = mult, X

= 3, which does what we want since 16/7 Y p, = 16/7 < 3.
| i=0
Now if x € V' is a non-ordinary double point—i.e. a double point whose
tangent cone is reduced to a single line—then dim (#, y/.#% %) = 2 and

Mex 212 %iX where 7 is the ideal of the tangent cone at x. Choose

coordinates (X, ..., X,) such that

) Xo(x) #0

i) v = X,/X,and u = X,/X, span M, x| M3 x
iii) uelso that u® e/ y.

iV) X3/X()7 ceey Xn/XOE‘/{J?;,X




Then if A(t) = the associated ideal is

— 1 pr——
J = (t* X, * X, tX 5, X3, ..y X,). But 041, 4/ F is supported only at the
point (0, x) hence e () is again Hilbert-Samuel multiplicity and is at least
equal to the multiplicity of the possibly larger ideal .#* = (¢*, t%v, tu, /A i,x).
If 7 is the ideal (¢*, .#2 ), then since

(t%v)® = t*v?el?
(tw)* = t*WH?et* (M, %)* = I* by iii)

S’ is integral over I. Hence

e(#)=e(s) =e(l) = (9).(2).e(ly) =16 = 3 p,

as required.

The attempt to systematize this theorem leads to a numerical measure
of the degree of singularity of a point. The results that follow are part of
a joint investigation of this concept by D. Eisenbud and myself. Full proofs
will appear later. Many of these results have also been discovered inde-
pendently by Jayant Shah.

DEFINITION 3.3.  If O is an equi-characteristic *) local ring of dimension
r, and k =0 is an integer, then we define e, (0), the k™ flat multiplicity

of 0, by

I
eo (0) = sup {7’%%1—)(5 ’I of finite colength in (9}

€y (@) = €y (@ [[t19 seey tlc]])
It is obvious that if @ is the completion of @, then ¢, (0) = ¢, (0).

PROPOSITION 3.4. ¢, (0) = max (1, e (0)/(r+k) ).

1y The hypothesis on (@ can be aveided, and the proof simplified, by a use of the
associated graded ring instead of the Borel fixed point theorem (D. Eisenbud).
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Proof. The second bound is obVious. To get the first note that if J
e(Jyn"

r!

is any ideal of finite colength then e (J") = n" e (J) and col (J") =
+ O (n~Y), hence |
e (J n)
— =
r!col(J")

as n — oo .

To get an upper bound on ¢, we first obtain another lower bound!

PROPOSITION 3.5. eo (0) = ¢, (0 [[t]]); moreover if r = dim O > 0
and there is equality, then the sup defining e, (0 [[t]]) is not attained. Hence

e (0) =e,; (0) =e,(0) = .......... >1.

Proof. 'We begin by giving a lemma which is useful in the applications of
eo as well.

LEMMA 3.6. Let F be the set of ideals of O [[t]] of theform I = & I;t',
i=0

where I; is an increasing sequence of ideals of finite colength in O such that
. Iy =0 for some N. Then
(1)
\ e (9 t = SUu —_—
o (@ 1[1D IEE r!col(l)

Proof. For any equi-characteristic local ring R, let Hilby be the
subscheme of the Grassmanian of codimension n subspaces of R/.#'y
parametrizing those subspaces which are ideals: since any ideal in R of
" colength n contains .#%, Hilby parameterizes these ideals. Let e: Hilbj
l — Z be the map assigning to an ideal its multiplicity. By results of Teissier
' and Lejeune [23], e is upper-semi-continuous.

The natural G,-action on 0 [[¢]] by ¢ - A¢ induces a G,-action on
Hilbjp,q3- By the Borel fixed point theorem, there is, for every I, an ideal
fixed by this action in O™ (I). Such an ideal must, by the upper-semi-
continuity of multiplicity have multiplicity at least as large as e (/). Thus,
to compute e, (O [[¢]]) it suffices to look at G,,-fixed ideals of finite colength
and £ is just the set of such ideals.

FixI = @ I;t',wherel, c I, < ... « Iy = 0 is an increasing sequence
i=0
N-1

of ideals in 0. Clearly col () = ), col (I;). To bound e (I) we note that
i=0




— 7

I"sI)eIo 'Ly *i?)e... eI ") @

Ut @UI L") @ @ (Iy_, I 1 W-n=1y g
(3.7) @Iy t VD7) @ (157! (N g @ (Ty—y ™)
@O @ ...

=I">([g@Ltd..@Lt"H)Ye[it"®... 1t )@ ...
(‘B(Iﬁ_lt(N—l)n @Ig:} t (N=1)n+1 D .... @IN_lth—l)

DOMD...
Hence,
N-2 n .
col(I")y = } ncol (I}) + Y, col(l;_,)
i=0 j=1
r+1 N-2 r+1
= igo e(l;) + i)l e(Iy-1) + O (n")
(We have evaluated the second sum by “integration”!)
Finally
N-2 N-—-1
(r+1) ) ed) +e(y_y) Y, ey
e(l) - i=0 - i=0 )
T N-1 = T N-1 ’
(rEDbeol L1y col (1) r1Y col (I)
_ i=0 i=0
with strict inequality if r > 0
e(ly)
= max —————— =¢,(0) .
; rlcol(l)

COROLLARY 3.8. If O isregular, e, (0) = 1 and if ¥ > 1, the defining
sup is not attained. '

COROLLARY 3.9. (Lech?). Forall O andall 1 < 0, e(I) =1 !e(0)
col (I), hence e, (0) = e (0).

Proof. None of the quantities involved change if we complete 0.
But after doing this, we can write ¢ as a finite module over 0, =
k [[t, ..., t,]] so that:

(*) There is a sub 0,-module 05'” = @ such that the quotient 0/0, is an
0,-torsion module M.

1y Cf. [13], Theorem 3.



A B

73 —

Let I, = I n O,. Then col (I) = col (/,) and
dim (0/I") =dim Q/Iﬁ 0
=dim (M /I% M) + dim (04[5 0°7)
Condition (*) implies that dim (M/I§ M) is represented by a polynomial
of degree less than r, hence
e(l) =e(0)eo)
= r e (0) col (I,) by Corollary 3.8
=r !e(0)col ()

We state two other useful properties of e;:

ProposiTiON 3.10. i) If O and O are local domains with the same
fraction field and O’ is integral over 0, then e, (0') = ¢, (0).

i) If 0 = (k[[t]]1+2) is an augmented k [[t]]-algebra, let O, = 04,
a local ring with residue field k ((t)) and let 05 = O/tO be its specialization
over k; then e (0,) = e, (0).

We come now to the main definitions.

DEerFINITION 3.11. O is semi-stable if e, (0) = 1; O is stable if, in
addition, the defining sup is not attained.

This terminology is justified by the following proposition which shows
that the semi-stability of the local rings on a variety X is just the local
impact of the global condition of asymptotic semi-stability for X.

ProrposiTiON 3.12.  Fix a variety X", an ample line bundle L = Oy (D)
on X, and pe X. Thenif O,y isunstable, (X,L) is asymptotically un-
stable.

Proof. Choose an ideal I = @, x [[¢]] such that
) e(l) =0+ (r+1)!col(),e >0

o0

i) I=@1It, Iycl; «..cly=0,x a sequence of ideals of
i=0

finite colength. (This is possible because of Lemma 3.6).

Let @, denote the projective embedding of X by I' (X, L®™). Choose m
large enough that
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a) forall Qe X, I (X",L™) Y I'(X,L™[IyM yx .L™) is surjective
b) L™ is very ample

1 m"(D") 1 deg @, (X)
1+¢ r!  14+e 7!

) K (X, L™ >

(That the last condition can always be realized is a consequence
of Riemann-Roch for X.)
Next choose a basis X; ;,0 =i = N, of I (X, L™) such that
X,,; 1s a basis of ' (1),
X; ;isabasisof y (I~ Uy),

-----------------------

Xy, ;is abasis of I' (X, L™y~ (Iy-1) ,

Finally, let A be the 1-PS which multiplies X; ; by ¢' :i.e. in the form of
(2.8) p) = j; then by assumption (a) the ideal # corresponding to
J in (2.8) is just I and is supported at the single point (0, p) € A' x X.
Moreover, by condition a)

> p? = Ndim (0/Iy-) + (N —1) dim (Iy_;/Iy-,)

& 4o+ 2dim (/1) + dim I,/I, = col (I)

(This is Lemma 2.14 again). Hence,
e(F) = e(l)
= (14+¢).(r+1)!col (1)
deg Qﬂl (X) . Z p(i,j)
(1+e)h°(L™) 5
_ (r+1)deg ¢, (X) T pld
h° (L™) i

> (1+¢).(r+1).

By Theorem 2.9, &,, (X) is unstable.
Restating Corollary 3.7 gives us a trivial class of stable points:

ProPOSITION 3.13. If O is regular and of positive dimension it is stable.

The next step is to pindown the meaning of semi-stability for small
dimensional local rings. For dimension 1, we can be quite explicit:
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PROPOSITION 3.14. If dim® =1 and O is Cohen-Macauley (i.e.
Spec O has no embedded components), then :

i) O stable <0 regular < e(0) = ey (0) = e, (0) = ... = L.
i) O semi-stable but not stable <> O an ordinary double point <>e (0)
= ¢, (0) = 2,61 (0) = e, (O) = ... = 1.

iii) O a higher double point = e, (0) = §/7.
iv) O a triple point or higher multiplicity = e (0) = 3/2.

Proof. If O is a triple or higher point, so is O [[¢]], hence e (O [[]])
= 3, and by Proposition 3.4, e; (0) = e, (O [[]]) = 3/2.
As for Cohen-Macaulay double points, when char. # 2 these are all

of the form 0 = k [[x, y]I/(x*—»"), 2 = n = oo. (Think of @ as a quadratic

free k [[y]]-algebra; the argument can be readily adapted to char. 2 also).

LI n=3, then in k[[x, y, (x> —y"), take T = (x% xy, y3, xt, pt>, 1%).
(This, of course, is the ideal of Proposition 3.1 again). I has complementary

basis (1, x, y, t, yt, t2,¢3), hence col (I) = 7. 1 claim e (I) = 16, which
 will imply iii). We first note that I is integral over (y2, ¢*). We compute the

. multiplicity of (y?, t%) as

intersection-multiplicity at 4 ((Spec 0) . (y*=0) . (1*=0))
= 8. intersection-multiplicity ((Spec 0) . (y=0) . (1=0)
= 16

- since 0 is a double point.

When 0 1s an ordinary double point, I claim e, (O [[¢]]) = 1. Since this
M 2
@ value is attained by the maximal ideal ./# : —~€( )_ = — =1, this will
P 20col (M) 2

iz prove ii), hence i) in view of Proposition 3.13.

In general, if 0 = k [[x, y]l/(x . ), an ideal I < O [[t]] corresponds to
§ 2 pair of ideals J < k [[x, t]] and K < k [[y, ¢]] such that J + (x)/(x) and
® K+ (»)/(y) have the same image, say ("), in k [[¢]]. A rough picture is
f civen below: the condition on the two ideals ensures that they glue along

E the intersection of the two planes.




vV (J)

"

/

In this situation, col (/) = col(J) + col(K) —n, and e(l) = e(J)
+ e (K), so the inequality e (7)/2 . col (I) = 1 follows from:

Lemma 3.15. If IT<kl[x,y]] and I+ (x) = (x,»%, then e(I)
=2col(l) — a.

Proof. By applying Lemma 3.6, we can reduce to the case where [
i1s generated by monomials:
I = @ (OF.xH. k[[y]], with a = rg =r; =...=ry = 0.
1=0
Then as ‘n (3.7):
In - <ynr0) IC @ (yn—~1)r0+r1x) k (_D (y(11—2)r0+2r1x2) k (_D
® (y"ix"k @ (T rtret he@ .. D2 @ ...

nn+1)
= col (I")é—(;—)ro + nlry +0%ry + ..l + nPry_q
e(l r
Qé_g+ 1+ ..... +I’N__1=CO](I)——.

RemMARK. If I < O [[¢]] is of the form of Lemma 3.6, the expansion
(3.7) for I", which we have used again here, can be used to give even better
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bounds for e (I). To get these however, requires the more involved theory
of mixed multiplicities which will be discussed in § 4.

The meaning of semi-stability for two dimensional singularities is not
yet completely worked out, but what follows gives a good overview of the
situation. ‘

DEFINITION 3.16. If O is a normal 2-dimensional local ring, x is the
closed point of Spec O, and X* —T . Spec O is a resolution of O (ie. =
is proper and birational ), then we define

i) big genus of O = dim R* 7w, (Ox.)
(R'm,, is a torsion O-module supported at x)

i) little genus of O = sup (p, (04)), where Z runs over the effective cycles
on © 1 (x). z

Wagreich [24] has shown that big genus == little génus—hence the names—
and Artin [3] has shown that if the little genus is zero then so is the big
genus. (But when little genus = 1, big genus may be > 1). We call O:
rational (resp. strongly elliptic) if its big genus is O (resp. 1), and weakly
elliptic if its little genus is 1.

If there is to be any hope of constructing compact moduli spaces for
semi-stable surfaces, the non-normal singularity xyz = 0 must be semi-
stable—in fact, it is. But xyz = 0 is the cone over a plane triangle so the
triple point on it is really a
degenerate “elliptic” singularity.
In fact, xyz = 0 is a limit of
the family of non-singular cubics |
xyz + t(x3+y3+2% = 0. Simi-
larly, the standard singularities
A,_q: xy = 2" and D,: x*=y?z
+z" have non-normal limits xy
= 0 and x* = p*z respectively
as n— co. We can summarize
these considerations in the heu-
ristic conjecture: the semi-stable
singularities of surfaces will be a limited class of rational and strongly
elliptic normal singularities and their non-normal limits.

We now list without proof some classes of semi-stable singula-
rities.
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3.17. ELLIPTIC POLYGONAL CONES. In P"”' take a generic n-gon

n

U piPi+1 (Po=p.+ 1) and take the cone in C" over it. This is a union of
i=0

n-planes crossing normally in pairs and meeting at an n-fold point at the
origin. We also allow the degenerate cases n = 2 (local equation x*=y?z?)
and n = 1 (local equation x*=y? (y+z*)) which correspond respectively, to
glueing two planes to each other along a pair of transversal lines, and to
glueing a pair of transversal lines in a plane together as shown below.

A
\

A

Y

ProposiTioN 3.18. Elliptic polygonal n-cones are semi-stable if and
only if 1 =n==6. Moreover, all small deformations of these singularities
are semi-stable.

Examples of such singularities are:

1) Cone over a smooth elliptic curve with generic j in P*, 3 =n = 5.
(In fact, I expect this holds for arbitrary j). These are also called the
simple elliptic (Saito) or parabolic (Arnold) singularities, and may be

w

described as @ I’ (E, L™) where E is an elliptic curve and L is a line

m=0
bundle of positive degree n: with this description, they are also defined
for n = 1, 2. For small n, these have the form

x>+ +z2+a(?2?) =0  (n=1),

X+ yt+ 25 +a(’2®) =0 (n=2),

x4+ + 22 +alxyz) =0 (n=3).
i1)) The hyperbolic singularities of Arnold:

xyz +x"+y" +zF =0 -+ — 4+ -<1.
iii) Rational double points.

iv) Pinch points: these have local equation x* = y?z.



3.18. RATIONAL POLYGONAL CONES. In P"~! take (n—1) generic line

segments Py P; U Py };; e U P_,,_1 P, and in C" take the cone over them:
one obtains (n—2) planes crossing normally in (n— 1) lines.

- ProposiTION 3.19. Rational polygonal n-cones are semi-stable if and
only if 2 =n = 6. Hence, all small deformations of these singularities are
semi-stable.

A typical singularity which arises in this way is the cone over a rational
normal curve in P*71, 2 =n =< 6.

By applying the semi-stability condition to the ideal 7 = @ '™/ . (F)
j=0

< O [[t]], where I is an ideal in @ and ~ denotes integral closure in 0,
one can prove the following necessary condition for semi-stability:

PROPOSITION 3.19.  If O is semi-stable, I < O and P (i) = dim (0/(I')),

then

P py = eI
()+ ..... + (l) :_W,

When r = 2, and O is Cohen-Macaulay this reduces us to fen basic
types of singularities. In the first few cases we have listed the singularities
of this type which are actually semi-stable.

1) Regular points: always stable.

2) Double coverings of C* with branch curve of multiplicity = 4: semi-
stable here are,
a) rational double points and their non-normal limits xy = 0,
x = y’z,
b) hyperbolic double points,
c) parabolic double points.

3) Triple points in C*: Semi-stable are, |
a) cones over non-singular elliptic curves,

b) hyperbolic triple points.
4-5) Triple and quadruple points in C*.
Quadruple and quintuple points in C>.
Quintuple and sextuple points in C®.

Sextuple points in C”.
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REMARK. With Eisenbud, we made some computations by computor
to eliminate cases; the computer came up with some amusing examples.
For instance it found an ideal 7 in k [[x, y, z, t]]/(x*+y>+z7) with col (1)
= 63,398, mult (/) = 381,024, showing that e, = 1.000167, hence that
the singularity x* + y* + z7 = 0 is unstable.

Further restrictions, confirming the heuristic conjecture, on what
singularities are semi-stable are provided by:

ProrosITION 3.20. If O is normal and semi-stable then O is rational
or weakly elliptic. Moreover, there are no cuspidal curves, i.e. generically
all singular curves are ordinary.

We omit the proof except to note that the last statement comes from the
observation that for large n the choices I, = (T°, 4°",v°") ~ show that
e, (K[[T? T =1 + 22/221 !

Now suppose @ is not Cohen-Macaulay. We can create a slew
of stable (@’s using 1) of Proposition 3.10. For example if & [[x, ¥]]
> O o k [[x, xp, y*]], then O is semi-stable since the ring on the right which
is the pinch point is semi-stable; a typical example is O = k [[x, xy, y%, ¥°1],
a very partial pinch in which only the y-tangent has been removed. For-
tunately most of these points cannot appear as singularities of varieties on
boundary of moduli spaces as they have no smooth deformations. More
precisely, (cf. [27]):

THEOREM 3.21. If O is a 2-dimensional local ring which is not Cohen-
Macauley such that 0 = O0'[]t0" where ' is a normal 3-dimensional local

ring ; let O be its normalization and O = {ae O | for some n, #ya
c0}.
Then 1) O is a local ring

i1) If in addition O has characteristic 0, then

norm norm

dim ((E/(O) = big genus of (5

REMARK. If, as seems likely, in view of Proposition 3.20 the big genus

of the Cohen-Macaulay ring ¢ is O or 1, this means that ¢ must be nearly
Cohen-Macauley.

We conclude this section by outlining an as yet completely uninves-
tigated approach to deciding which singularities should be allowed on the
objects of a moduli space.




DEFINITION 3.22. (" is an insignificant limit singularity if, whenever ('
is an (r+1) dimensional local ring such that O = O'[t0" for some t€ o',
n: X — Spec O’ is a resolution of Spec ® and E < X is an exceptional
divisor (i.e. dim 7 (E) < dim E), then E is birationally ruled, that is,
the function field of E is a purely transcendental extension of a proper sub-
field. Equivalently, setting O/ M, = k, this says that whenever R is a
discrete rank 1 valuation ring containing O’ with tr. deg  RlM g = r,
then R|# g = K (t), for some K such that tr.deg, K = r — L.

ExaMPLES. 1) xy = 0 is insignificant because on deforming this only
A, singularities arise. ‘

2) x* + ¥ =0 is significant because the deformation 1° = x* + »°

blows up to a non-singular elliptic curve with (E?) = — 1. Similarly
I can show that all higher plane curve singularities are significant.

3) x>+ 3 + y* = 0 is significant because #'2 = x> + y> + y* blows
up to a 3-fold containing a K3 surface.

4) Jayant Shah [26] has proven that rational double points and Arnold’s
parabolic and hyperbolic singularities are insignificant. As a limiting
case, normal crossings xyz = 0 is insignificant.

REMARKS. 1) Why should birational ruling of exceptional divisors be
the right criterion for insignificance ? The reason is that all exceptional
divisors which arise from blow-ups of non-singular points are birationally
ruled and all birationally ruled varieties arise in this way. So on the one
hand, such exceptional divisors must be permitted, and on the other, the
examples suggest that sufficiently tame singularities cannot “swallow”
anything else.

2) The examples suggest that ¢ semi-stable and ¢ insignificant are closely
related. For instance, perhaps these are the same when embedding-dim @
= 1. In dim 2 for example, after hyperbolic and parabolic singularities in
the Dolgacev-Arnold list [2, 7] of 2-dimensional singularities come 31 special
singularities. These are all unstable and in a recent letter to me Dolgacev
remarks that all of these have deformations which blow up to K3 surfaces
as in Example 3. If semi-stability and insignificance turn out to be roughly
the same in arbitrary dimension, we would have a very powerful tool to
apply to moduli problems.
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