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KRITISCHE PUNKTE UND KRUMMUNG
FUR DIE MENGEN DES KONVEXRINGES

von Rolf SCHNEIDER

Bei glatten Hyperflichen im euklidischen Raum E” besteht bekanntlich
ein enger Zusammenhang zwischen der GauBlschen Kriimmung und den
Morse-Indizes kritischer Punkte von Hohenfunktionen. Hierdurch ergibt
sich insbesondere der Satz von Gaul3-Bonnet als einfaches Korollar eines
Satzes Uiber Indexsummen (siche z.B. Kuiper [7]). Eine analoge, aber ganz
elementare Theorie fiir Zellkomplexe im E" ist von Banchoff [3] (siehe
auch [4]) dargestellt worden. Fiir beliebige kompakte euklidische Polyeder
hat Hadwiger [6] nach Erkldrung einer geeigneten Eckenkriimmung ein
Analogon zur Gaull-Bonnet-Formel gefunden. Ziel dieser Note ist eine
Ausdehnung dieser elementaren Begriffsbildungen und Ergebnisse auf die
Mengen des Konvexringes. Der kombinatorische Kern der Zusammenhinge
tritt dabei noch deutlicher zutage.

Unter dem Konvexring K" versteht man das System aller Teilmengen
des n-dimensionalen euklidischen Raumes E”, die sich als Vereinigung von
endlich vielen konvexen Korpern (nichtleeren, kompakten, konvexen
Mengen) darstellen lassen. Auch die leere Menge @ wird zu K" gerechnet.
K" ist abgeschlossen gegeniiber der Bildung endlicher Vereinigungen und
Durchschnitte. Auf K" gibt es eine eindeutig bestimmte reelle Funktion y
mit ¥ (&) = 0 und y (K) = 1 fiir jeden konvexen Korper K, die additiv
1st, also

(D) x(Kyu Ky) + x(Ky nKy) = x(Ky) + x(K,) fir K, K, e K"

erfiillt. Dies ist die Eulersche Charakteristik, deren Existenz nach Had-
wiger [5] in elementarer Weise nachgewiesen werden kann. Die Eindeutig-
keit ergibt sich sofort mit der aus (1) folgenden Formel

X(K) = EveS(r)("‘l)lv[_IVX(Kv) fir K = U;=1 Kja

von der wir des 6fteren Gebrauch machen werden. Hier durchliuft v das
System S (r) der nichtleeren Teilmengen von {1, ..., r}, | v l ist die Element-
zahl von v, und fiir v = {iy, ..., i,} € S (r) ist
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gesetzt.

Wir bezeichnen mit <-,-) das Skalarprodukt des E" und mit S" 1
= {xe E" I {x,x)y = 1} die Einheitssphire. Fiir einen konvexen Korper
K < E" und fiir £e€S"" ! sei H(K, &) die Stiitzebene an K mit duBerem
Normalenvektor £. Ferner sei fiir p e E”, £ S"™ ! und reelles ¢

H,(p,&) = {xeE"|{x,&) = (p, &) + &

gesetzt. Mit B, , wird die abgeschlossene Vollkugel mit Mittelpunkt p und
Radius p bezeichnet.

Zunichst setzen wir nun fir pe E", £ S"" ! und konvexe Korper
K < E”
1, wenn pe H(K, &) n K,

0 sonst.

i(K,p, &) ={

Fir Ke&", dargestellt in der Form K = u’_; K; mit konvexen
Korpern K;, mochten wir dann

(2) l(K,p, é) = ZveS(r)(—'l)lvl—li(Kv:pa é)

definieren. Hierzu ist zu zeigen, dal3 die rechte Seite nur von K und nicht
von der speziellen Darstellung von K als Vereinigung konvexer Korper
abhingt. Im Fall p ¢ K ist das richtig, da die rechte Seite gleich Null ist.
Sei also pe K. O.B.d.A. gelte p e K; genau fir j = 1, ..., m. Wir konnen
p > 0 so klein wihlen daBl K; n B, , = @ fir j¢{l, ..., m} gilt. Sodann
konnen wir & > 0 so klein wihlen, daB H,(p,¢) nK,n B, , # o fiir
alle v € S (m) mit i (K,, p, &) = 0 gilt. Dann ist also fir v e S (m)

i(Kpyp, &) =1 = x(H,(p, )" K,nB,,).
Es folgt
Z‘veS(r) ( - 1)|v|—1 i(Kvn D> 6) = Z:veS(m) ( - ].)[v] -t i(Kva P, 6)
= ZveS(m)('_'l)lvl—1 [1 - X(Ha(pa é) N Kv me,p)]
=1-y(H,(p, ) nKnB,,).

Somit ist

ZveS(r)(—l)lul—li(Kmpa 'f) =1~ lim lim X(He(ps é)mKﬂBp,p),

p—>0+ e—-0+

was nur noch von K abhingt. Wir kénnen also in der Tat i (X, p, &) durch (2)
definieren. Zugleich haben wir damit die Darstellung




— 3 —

0, wenn p¢ K,
(3 i(K.p.9) =11 _ lim lim 1(H,(p,&)nKnB,,),wenn pe K,
p-0+ -0+
gewonnen. Wir setzen noch i (&, p, &) = 0.

Die ganze Zahl i (K, p, &) nennen wir den Index von K in p beziig-
lich &. Bei festen p und €& ist i (-, p, &) gemdB (2) ein additives Funktional
auf dem Konvexring &”. Ist i (K, p, &) # 0, so wollen wir p als kritischen
Punkt von K beziiglich ¢ bezeichnen. Aus (3) geht hervor, dal hochstens
Randpunkte von K kritisch sein konnen.

Wir wollen nun zeigen, dall die Summe der Indizes aller kritischen
Punkte von K beziiglich & gleich der Eulerschen Charakteristik von K ist.
Wie im Fall glatter Flichen miissen wir uns dazu auf Richtungen ¢&
beschrianken, fiir die alle kritischen Punkte ,,nichtdegeneriert” sind. Der
Vektor ¢ heile reguldr fiir K e K", wenn es eine Darstellung K = U, K|
mit konvexen K; gibt, so dall H (K,, ) n K, fiir jedes v € S (r) hochstens
einen Punkt enthélt. Da bei gegebener Darstellung nur endlich viele konvexe
Korper K, vorkommen, ist die Menge der Vektoren &, die fiir gegebenes
K e K" nicht reguldr sind, auf S$"~' vom MaB Null. Die nichtreguliren
Stutzrichtungen eines konvexen Korpers machen nidmlich nur eine Null-
menge aus (fiir n = 3 siehe A. D. Aleksandrov [1], Kap. V,§2; der Beweis
1Bt sich auf hohere Dimensionen ausdehnen; man kann dieses Ergebnis
aber auch durch Anwendung einer bekannten Aussage iiber singulire
Randpunkte (siche z.B. Anderson-Klee [2]) auf den polaren Korper
erhalten).

Satz 1. Ist Ke K" undist &€ S"™ ' regulir fiir K, so gilt
ZpeKi(Kap: 5) - X(K)

Beweis. Fur K = @ ist die Gleichung erfiillt. Fir o # Ke K" sei
K = Uj- K; eine Darstellung mit konvexen K; derart, daB H (K,, &) n K,
stets hochstens einen Punkt enthilt. Es gilt

(4) Z‘peK i (K, P, é) = ZueS(r)(— 1)]”] -t Z‘peK i (Kva p, 6) ¢

Ist K, # &, so gibt es genau einen Punkt p € K mit i (K, p, &) = 1,
also ist

EpeKi(Kua P, é) - X(Kv) .

Die rechte Seite in (4) ist also gleich y (K), was zu beweisen war.
Eine besondere Formel fiir den Index hat man zur Verfiigung im Falle
eines Polyeders, also einer Vereinigung von endlich vielen konvexen Poly-
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topen. Jedes Polyeder 146t sich (auf mannigfache Art) als Triger ] P | eines
Zellkomplexes & darstellen. Unter einem Zellkomplex im E" versteht man
dabei eine Menge 2 von endlich vielen konvexen Polytopen des E”, den
Zellen von 2, mit der Eigenschaft, dal3 mit jeder Zelle auch alle ihre Seiten
zu 2 gehoren und daB der Durchschnitt von je zwei Zellen entweder leer
oder eine gemeinsame Seite beider Zellen ist. Der Tréger | 2 | des Komplexes
2 ist die Vereinigung all seiner Zellen, also ein Element des Konvexringes
K". Mit 4* (2) bezeichnen wir die Menge aller k-dimensionalen Zellen von
2. Ist nun 2 ein Zellkomplex, so gilt fiir den Index von | 2| in einem
Punkt p € E" beziiglich der Richtung ¢ € $"~! die Gleichung

(5) i(121,p,8) = Zioo (=1 2 zeanipy 1 (Z, p, -8,

vorausgesetzt, dal} fiir je zwei verschiedene Ecken (0-dimensionale Zellen)
x,y von £ stets {x,&> # {(p,&) ist (£ soll dann reguldr fiir & heillen). Die
anschauliche Deutung der inneren Summe ist unmittelbar ersichtlich: dies
ist die Anzahl der k-dimensionalen Zellen von £, fiir die p die ,,tiefste®
Ecke beziiglich der durch ¢ bestimmten Hohenfunktion ist.

Mit der Gleichung (5) ist der AnschluB3 an Banchoff’s [3] Indexdefinition
gewonnen. Insbesondere hat sich gezeigt, da3 die von Banchoff fiir einen
Zellkomplex 2 definierte Indexfunktion nur vom Tréger | 2 | und nicht
von dessen spezieller Zellzerlegung abhéngt.

Die Gleichung (5) ist fiir den Fall, dal £ der Randkomplex eines
konvexen Polytops ist, von Shephard [11], (13), bewiesen worden. Unter
Verwendung der Additivitit des Index erhilt man daraus den allgemeinen
Fall nach einer Methode von Perles-Sallee [10], S. 238-239.

Wir erkldaren nun fiir die Mengen des Konvexringes ein Kriimmungs-
mal. Ist zundchst K e &" ein konvexer Korper und B < E” eine Borel-
menge, so bezeichne ¢ (K, B) das sphirische Bild von 0 K n B, also die
Menge aller Vektoren ¢ e S"™ 1!, die als duBlere Normalenvektoren an K
in einem Punkt aus B auftreten. Dann ist ¢ (K, B) eine Lebesgue-mef3bare
Teilmenge von S"” ', und wenn ihr Lebesguesches MaB mit x (K, B)
bezeichnet wird, so ist damit ein Mal} « (K, -) auf der o-Algebra der Borel-
mengen des E" erklirt. Die Beweise fir diese Behauptungen findet man fiir
den Fall n = 3 bei Aleksandrov [1], Kap. V, § 2; die Ubertragung auf
hohere Dimensionen bereitet keine Schwierigkeiten. Wir bezeichnen
x (K, ) als das (GauBsche) KriimmungsmalBl von K. Unter Verwendung
des Index 148t es sich darstellen durch

K(Ka B) - jsn—l Z‘peBi(I<: p, é)d w(é) »
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wo o das Lebesguesche MaB auf der Sphire S"~' bezeichnet. Der Inte-
grand stimmt nidmlich auBerhalb einer Nullmenge N (K) (der Menge
der £ € S"*, die fiir K nicht regulir sind) {iberein mit der charakteristischen
Funktion der Menge o (K, B).

Ist nun K € K" eine nichtleere Menge des Konvexringes mit der Dar-
stellung K = U%_{ K; mit konvexen Ké&rpern K, so gilt fir jede Borel-
menge B < E" und fiir €€ $"7 '\ Uyes(ry N (K))

ZpEB i <I<3 p, é) = Z‘peB ZveS(r) ( - 1)[Ul -t i<Kva D, é)
= Z:vES(r)(-“]“)IUI—lZpeBi(I<wp’ é)
Wir koénnen also

(6) x(K,B) = js,,_lzpeBi(K,p, Ed w (&)

(und k (@, B) = 0) definieren, denn die Funktion & 1—» 2 i (K, p, &) ist
auf S"~ ! integrierbar; und es ergibt sich sogleich die Darstellung

(7) K (Ka B) = Z‘veS(r) ( - 1)1”| ! K (Kva B) '

Wir bezeichnen das signierte BorelmalB « (K, ) als das Kriimmungsmall
von K. Der an sich naheliegende Versuch, die Gleichung (7) als Definition
fir k (K, B) zu benutzen, begegnet der Schwierigkeit, die Unabhidngigkeit
von der speziellen Darstellung von K als Vereinigung konvexer Korper
nachweisen zu miissen. Hier erweist sich also die Verwendung des Index
und die damit mogliche Definition (6) als vorteilhaft. Wie man an (7)
abliest, ist bei festem B durch x (-, B) ein additives Funktional auf dem
Konvexring K" gegeben. In dieser Additivitdt diirfte im Hinblick auf
weitere Anwendungen des KriimmungsmalBes ein Vorteil zu sehen sein.
Eine unterschiedliche, von Matheron [9], S. 119-122, vorgeschlagene Fort-
setzung des KriimmungsmafBles von der Menge der konvexen Korper auf
den Konvexring besitzt diese Additivititseigenschaft nicht. Aus der
Additivitit des KrimmungsmalBes resultiert das folgende elementare
Analogon des GaufB3-Bonnetschen Satzes.

Satz 2. Fir Ke & gilt
K(K,E™) = o (S"™ Y x(K).

Beweis. Fur K = @ ist das klar. Sei K = U'j_{ K; mit konvexen
Korpern K;. Dann folgt aus (7)

K(I<>En) = Z‘veS(r)(_—1)“][__1 K (KuaEn)
= Zyes(n (= DT 0 (8" 1 (K,) = 0 (S"™Y) 1 (K).
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Ist speziell K ein Polyeder, so ergibt sich ein Resultat von Banchoff [3]
(Theorem 2). Ferner verallgemeinert Satz 2 ein von Hadwiger [6] angege-
benes, eine unterschiedliche Kriimmungsdefinition verwendendes Analogon
der GauB-Bonnet-Formel fiir Polyeder. Um dies einzusehehn, beachte
man, dal} fiir ein Polyeder K e K" der von Hadwiger erklidrte Polarwinkel
a (K; p) ibereinstimmt mit « (K, {p}); die Gleichheit ergibt sich aus der
offensichtlichen Ubereinstimmung auf der Menge der konvexen Polytope
und aus der Additivitit beider Funktionale. Ferner ist klar, dal3 das signierte
MaB x (K, -) in den Ecken von K konzentriert ist.

AbschlieBend sei darauf hingewiesen, dall von Kuiper [8] ein schr
allgemeines Konzept fiir kritische Punkte und Kriimmungen entwickelt
worden ist. Bereits die Definitionen benéGtigen dort, der angestrebten
Allgemeinheit entsprechend, topologische Hilfsmittel. Ziel der vorliegenden
Note war es, zumindest fiir die Mengen des Konvexringes einen vollig
elementaren Zugang zu einem Kriimmungsbegriff aufzuweisen.
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