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KRITISCHE PUNKTE UND KRÜMMUNG
FÜR DIE MENGEN DES KONYEXRINGES

von Rolf Schneider

Bei glatten Hyperflächen im euklidischen Raum En besteht bekanntlich
ein enger Zusammenhang zwischen der Gaußschen Krümmung und den

Morse-Indizes kritischer Punkte von Höhenfunktionen. Hierdurch ergibt
sich insbesondere der Satz von Gauß-Bonnet als einfaches Korollar eines

Satzes über Indexsummen (siehe z.B. Kuiper [7]). Eine analoge, aber ganz
elementare Theorie für Zellkomplexe im En ist von Banchoff [3] (siehe

auch [4]) dargestellt worden. Für beliebige kompakte euklidische Polyeder
hat Hadwiger [6] nach Erklärung einer geeigneten Eckenkrümmung ein

Analogon zur Gauß-Bonnet-Formel gefunden. Ziel dieser Note ist eine

Ausdehnung dieser elementaren Begriffsbildungen und Ergebnisse auf die

Mengen des Konvexringes. Der kombinatorische Kern der Zusammenhänge
tritt dabei noch deutlicher zutage.

Unter dem Konvexring 5U versteht man das System aller Teilmengen
des /2-dimensionalen euklidischen Raumes En, die sich als Vereinigung von
endlich vielen konvexen Körpern (nichtleeren, kompakten, konvexen
Mengen) darstellen lassen. Auch die leere Menge 0 wird zu Rn gerechnet.
ftw ist abgeschlossen gegenüber der Bildung endlicher Vereinigungen und
Durchschnitte. Auf 5U gibt es eine eindeutig bestimmte reelle Funktion %

mit x(0) 0 und % (K) 1 für jeden konvexen Körper K, die additiv
ist, also

(1) x(KiU K2) + x(K1n K2)x(Ki) + für

erfüllt. Dies ist die Eulersche Charakteristik, deren Existenz nach
Hadwiger [5] in elementarer Weise nachgewiesen werden kann. Die Eindeutigkeit

ergibt sich sofort mit der aus (1) folgenden Formel

X(K) ZreS(r)(-lfür K u'j i Kj
von der wir des öfteren Gebrauch machen werden. Hier durchläuft v das
System S fr) der nichtleeren Teilmengen von {1,..., |v | ist die Elementzahl

von v, und für v {it,...,ik}e 5" (r) ist
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Kv Kh n n Kik
gesetzt.

Wir bezeichnen mit <•, •) das Skalarprodukt des En und mit S"1-1

{xeEn | <x, x> 1} die Einheitssphäre. Für einen konvexen Körper
K c En und für sei H (K, Ç) die Stützebene an K mit äußerem

Normalenvektor £. Ferner sei für p eEn, Çe S11"1 und reelles s

Ha(p, 0 {xeEnI<x, O O + 8}

gesetzt. Mit Bpp wird die abgeschlossene Yollkugel mit Mittelpunkt p und
Radius p bezeichnet.

Zunächst setzen wir nun für p e En, ÇeS"-1 und konvexe Körper
K c En

1, wenn peH(K, Ç) n K,
0 sonst.

0

Für K e Rn, dargestellt in der Form K urj= x Kj mit konvexen

Körpern Kj9 möchten wir dann

(2) i(K,P,oE„S(r)(-iyi-u&.p,®
definieren. Hierzu ist zu zeigen, daß die rechte Seite nur von K und nicht
von der speziellen Darstellung von K als Vereinigung konvexer Körper
abhängt. Im Fall p $ K ist das richtig, da die rechte Seite gleich Null ist.
Sei also p e K. O.B.d.A. gelte peKj genau für y 1, m. Wir können

p > 0 so klein wählen daß Kj n Bpp 0 für j {1, m} gilt. Sodann

können wir s > 0 so klein wählen, daß He (p, £) n Kv n Bp p # 0 für
alle v e S (m) mit i (Kv, /?,£) 0 gilt. Dann ist also für v e S (m)

i(K„ p,Ç) l -X(He(p,n Kv n BPiP)

Es folgt

W)(-l )^-yi{Kv,pA) ZveS(m)

^sS(m)("l)W-l[l-x(Ht(p,Ç)nKvnBPiP)-\
1 - x(He(p,OnKnBP:P).

Somit ist

W)(-l)M~1*(K.,P>ö 1 " I lim x(H.(p,Ç) n K nBp>p),
p-+ 0+ £->0 +

was nur noch von K abhängt. Wir können also in der Tat i (X, p, Ç) durch (2)

definieren. Zugleich haben wir damit die Darstellung
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10,
wenn p £ K,

1- lim lim x(H,(p,Ç)nKnBPtP),vfeTm
p->0+ £-*0 +

gewonnen. Wir setzen noch i (0,p9 0 0.

Die ganze Zahl i (.K, p, |) nennen wir den Index von K in p bezüglich

£. Bei festen p und £ ist z (•,/?, |) gemäß (2) ein additives Funktional
auf dem Konvexring Rn. Ist i (K, p, £) ^ 0, so wollen wir p als kritischen
Punkt von K bezüglich £ bezeichnen. Aus (3) geht hervor, daß höchstens

Randpunkte von K kritisch sein können.
Wir wollen nun zeigen, daß die Summe der Indizes aller kritischen

Punkte von K bezüglich Ç gleich der Eulerschen Charakteristik von K ist.
Wie im Fall glatter Flächen müssen wir uns dazu auf Richtungen £

beschränken, für die alle kritischen Punkte „nichtdegeneriert" sind. Der
Vektor £ heiße regulär für Ke Rn, wenn es eine Darstellung K u j-1 Kj
mit konvexen Kj gibt, so daß H (Kv, Ç) n Kv für jedes v e S (r) höchstens
einen Punkt enthält. Da bei gegebener Darstellung nur endlich viele konvexe

Körper Kv vorkommen, ist die Menge der Vektoren die für gegebenes
KeSKn nicht regulär sind, auf Sn_1 vom Maß Null. Die nichtregulären
Stützrichtungen eines konvexen Körpers machen nämlich nur eine

Nullmenge aus (für n 3 siehe A. D. Aleksandrov [1], Kap. V, § 2; der Beweis
läßt sich auf höhere Dimensionen ausdehnen; man kann dieses Ergebnis
aber auch durch Anwendung einer bekannten Aussage über singuläre
Randpunkte (siehe z.B. Anderson-Klee [2]) auf den polaren Körper
erhalten).

Satz 1. Ist Ke Sin und ist ÇeSn~1 regulär für K, so gilt

ZpeKi(K,P,® X(K).
Beweis. Für K— 0 ist die Gleichung erfüllt. Für 0 ^KeRn sei

K 1 Kj eine Darstellung mit konvexen Kj derart, daß H (Kv, Ç) n Kv
stets höchstens einen Punkt enthält. Es gilt

(4) IpeK i(K,p,() ZveS(r)(-1)1i»I" 1

Ist Kv =£ 0, so gibt es genau einen Punkt p e K mit i(Kv,p, ç) ],
also ist

ZpeKÎ(Kv,p, 0 x{Kv).
Die rechte Seite in (4) ist also gleich % (K), was zu beweisen war.
Eine besondere Formel für den Index hat man zur Verfügung im Falle

eines Polyeders, also einer Vereinigung von endlich vielen konvexen Poly-
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topen. Jedes Polyeder läßt sich (auf mannigfache Art) als Träger | 0 | eines

Zellkomplexes 0 darstellen. Unter einem Zellkomplex im En versteht man
dabei eine Menge 0 von endlich vielen konvexen Polytopen des En, den

Zellen von 09 mit der Eigenschaft, daß mit jeder Zelle auch alle ihre Seiten

zu 0 gehören und daß der Durchschnitt von je zwei Zellen entweder leer

oder eine gemeinsame Seite beider Zellen ist. Der Träger | 0 | des Komplexes
0 ist die Vereinigung all seiner Zellen, also ein Element des Konvexringes
Rn. Mit Ak (0) bezeichnen wir die Menge aller &-dimensionalen Zellen von
0. Ist nun 0 ein Zellkomplex, so gilt für den Index von | 0 | in einem
Punkt p eEn bezüglich der Richtung Ç e die Gleichung

(5) 0 ZUoi-lfZz-0,
vorausgesetzt, daß für je zwei verschiedene Ecken (O-dimensionale Zellen)
V, y von 0 stets ^ <(y, £> ist (£ soll dann regulär für 0 heißen). Die
anschauliche Deutung der inneren Summe ist unmittelbar ersichtlich: dies

ist die Anzahl der &-dimensionalen Zellen von 0, für die p die „tiefste"
Ecke bezüglich der durch £ bestimmten Höhenfunktion ist.

Mit der Gleichung (5) ist der Anschluß an Banchoff's [3] Indexdefinition

gewonnen. Insbesondere hat sich gezeigt, daß die von Banchoff für einen

Zellkomplex 0 definierte Indexfunktion nur vom Träger | 0 | und nicht

von dessen spezieller Zellzerlegung abhängt.
Die Gleichung (5) ist für den Fall, daß 0 der Randkomplex eines

konvexen Polytops ist, von Shephard [11], (13), bewiesen worden. Unter
Verwendung der Additivität des Index erhält man daraus den allgemeinen
Fall nach einer Methode von Perles-Sallee [10], S. 238-239.

Wir erklären nun für die Mengen des Konvexringes ein Krümmungsmaß.

Ist zunächst KeSKn ein konvexer Körper und B a En eine

Borelmenge, so bezeichne o (K, B) das sphärische Bild von ô K n B, also die

Menge aller Vektoren £ eSn~l, die als äußere Normalenvektoren an K
in einem Punkt aus B auftreten. Dann ist o (K, B) eine Lebesgue-meßbare

Teilmenge von Sn~3 und wenn ihr Lebesguesches Maß mit k(K,B)
bezeichnet wird, so ist damit ein Maß k (K, •) auf der er-Algebra der

Borelmengen des En erklärt. Die Beweise für diese Behauptungen findet man für
den Fall n 3 bei Aleksandrov [1], Kap. V, § 2; die Übertragung auf
höhere Dimensionen bereitet keine Schwierigkeiten. Wir bezeichnen

k (K, •) als das (Gaußsche) Krümmungsmaß von K. Unter Verwendung
des Index läßt es sich darstellen durch

k(K,B) | n.1IpeBi(K
S
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wo œ das Lebesguesche Maß auf der Sphäre Sn 1 bezeichnet. Der

Integrand stimmt nämlich außerhalb einer Nullmenge N (K) (der Menge

der £ g Sn~ \ die für K nicht regulär sind) überein mit der charakteristischen

Funktion der Menge a (K, B).
Ist nun K e ft" eine nichtleere Menge des Konvexringes mit der

Darstellung K Kjrj=1Kj mit konvexen Körpern Kj9 so gilt für jede

Borelmenge B c= En und für ç e Sn~1 \ uüe5(l.) A(Ky)

ipeBi(K,p,0 -
Wir können also

(6) k(K,£) -
(und k (0, B) 0) definieren, denn die Funktion ^ i-> IpeB i (K, /?, Ç) ist
auf S"-1 integrierbar; und es ergibt sich sogleich die Darstellung

(7) k(K,B) ZvsS(r) — l)hl -1 K (Kv, B)

Wir bezeichnen das signierte Borelmaß k (K, •) als das Krümmungsmaß

von K. Der an sich naheliegende Versuch, die Gleichung (7) als Definition
für k (K, B) zu benutzen, begegnet der Schwierigkeit, die Unabhängigkeit
von der speziellen Darstellung von K als Vereinigung konvexer Körper
nachweisen zu müssen. Hier erweist sich also die Verwendung des Index
und die damit mögliche Definition (6) als vorteilhaft. Wie man an (7)

abliest, ist bei festem B durch k (•, B) ein additives Funktional auf dem

Konvexring ft" gegeben. In dieser Additivität dürfte im Hinblick auf
weitere Anwendungen des Krümmungsmaßes ein Vorteil zu sehen sein.

Eine unterschiedliche, von Matheron [9], S. 119-122, vorgeschlagene
Fortsetzung des Krümmungsmaßes von der Menge der konvexen Körper auf
den Konvexring besitzt diese Additivitätseigenschaft nicht. Aus der
Additivität des Krümmungsmaßes resultiert das folgende elementare

Analogon des Gauß-Bonnetschen Satzes.

Satz 2. Für Kg ft" gilt

k(K, E ") &>(S",_1) x(K)
Beweis. Für K 0 ist das klar. Sei K uj=1 Kj mit konvexen

Körpern Kj. Dann folgt aus (7)

k(K,E ")^vsS(r)(— 1)' - 1
")

W)(-1)|B|"1 œiS'-^xiK)ö)(
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Ist speziell K ein Polyeder, so ergibt sich ein Resultat von BanchofF [3]

(Theorem 2). Ferner verallgemeinert Satz 2 ein von Hadwiger [6] angegebenes,

eine unterschiedliche Krümmungsdefinition verwendendes Analogon
der Gauß-Bonnet-Formel für Polyeder. Um dies einzusehehn, beachte

man, daß für ein Polyeder K e Rn der von Hadwiger erklärte Polarwinkel
oc(K;p) übereinstimmt mit k(K, {/?}); die Gleichheit ergibt sich aus der

olfensichtlichen Übereinstimmung auf der Menge der konvexen Polytope
und aus der Additivität beider Funktionale. Ferner ist klar, daß das signierte
Maß k (K, •) in den Ecken von K konzentriert ist.

Abschließend sei darauf hingewiesen, daß von Kuiper [8] ein sehr

allgemeines Konzept für kritische Punkte und Krümmungen entwickelt
worden ist. Bereits die Definitionen benötigen dort, der angestrebten

Allgemeinheit entsprechend, topologische Hilfsmittel. Ziel der vorliegenden
Note war es, zumindest für die Mengen des Konvexringes einen völlig-
elementaren Zugang zu einem Krümmungsbegriff aufzuweisen.
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