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LA (2p+1)-EME DEVIATION D’UN ANNEAU LOCAL'?

par Michel ANDRE

Par un argument de résolution minimale ou par un argument d’algcbre
de Hopf a puissances divisées, on sait que la série de Poincaré d’un anneau
local noethérien 4 a la forme suivante

Py(x) = 2B, x/ = (1 +x)1(1=x*)""2 ...,

Les nombres de Betti f; sont les dimensions des espaces vectoriels
Tor f (K, K) sur le corps résiduel K, et les nombres positifs ou nuls ¢; sont
appelés les déviations de anneau local. Par ailleurs la théorie du complexe
cotangent, avec 1’homologie qui en découle, fournit d’autres nombres
positifs ou nuls 6; qui sont appelés les invariants de I’anneau local et qui
sont égaux aux dimensions des espaces vectoriels H; (4, K, K).

Gréace a un théoréme de convergence de D. Quillen, on peut appliquer
la théorie du produit symétrique et constater que 1'on a 1’égalité¢ o; = ¢;
sans restriction en caractéristique nulle et avec la restriction i <C 2p en
caractéristique positive. Un rappel de la démonstration sera donné ci-
dessous. Le premier degré intéressant en caractéristique p est donc égal a
2p+1. On a alors toujours une inégalité 5, ,,,<C&;,4,. Il y a méme égalité
si Jidéal maximal M est petit dans 'un des deux sens suivants: ou bien
I'idéal M? est nul ou bien I'idéal M a 2p—1 générateurs. 1l se pose le pro-
bléme de I’égalité en toute généralité.

Une analyse de la situation fait revenir a la théorie de ’homologie des
produits symétriques et des espaces d’Eilenberg-Mac Lane. Dans la termi-
nologie de Cartan, c’est le mot oyoo qui concerne tout spécialement le
degré 2p+1. En topologie, il lui correspond I'opération cohomologique

P:H? - H2r+!

fortement liée aux puissances p-¢mes des éléments de degré 2 et aux iso-
morphismes de suspension. De maniére analogue, une application cano-
nique va apparaitre

. T3 (A> K: K) — T2p+1 (Aa Ka K)

1) Présenté au Colloque de Topologie et d’Algebre, Zurich, avril 1977.
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ou T;(4, K, K) est 'espace vectoriel des éléments indécomposables de
Tor 4 (K, K). Mais alors I’égalité 02p+1 = €2p+¢ & lieu si et seulement si 7
est "application nulle. Un exemple va montrer que cette propriété n’est pas
toujours satisfaite.

L’espace vectoriel T5 (A4, K, K), qui concerne la notion d’intersection

compléte, est un quotient du deuxiéme module d’homologie a la Koszul.

Il est donc possible de remplacer la paire quelconque (4, «), ol « appartient

a T5 (A, K, K), par une paire générique (A4, «). La situation se simplifie

~ o~

maintenant: ou bien I’élément 7 («) est nul et alors = est toujours nul et

~ o~

05,41 €st toujours égal a ¢, ,, 4, ou bien I’élément 7 («) n’est pas nul et alors

A fournit 'exemple recherché d’un anneau avec 6,,,  strictement inférieur

a & ,44¢. Le calcul montre que I’élément = («) n’est pas nul. I1 faut donc se
contenter de la propriété suivante:

_
O2p+1 < E2pr1 < Ogpyy + &3

Le cas ol &5 est nul n’apporte rien de nouveau. En effet I’anneau A est alors
une intersection complete, ce qui oblige la déviation &,,,, et I'invariant
0yp+1 & €tre nuls.

INTRODUCTION

Il est possible de résoudre preojectivement le 4-module K par une A-
algébre simpliciale P qui est libre en chaque degré, comme A-algébre. Le
produit tensoriel P® 4K est alors une K-algébre simpliciale R qui est libre
en chaque degré, comme K-algébre. L’espace vectoriel H, [R] est évidem-
ment toujours égal & I’espace vectoriel Tor 4 (K, K). De plus la K-algébre
simpliciale R est munie d’une augmentation p: R — K. Son noyau 7 est un
idéal simplicial de I’anneau simplicial R. Il est utile d’en considérer les
puissances successives I, calculées degré par degré. En particulier le quo-
tient I/I* est un K-module simplicial, dont le complexe correspondant est
par définition le complexe cotangent de la A-algeébre K. L’espace vectoriel
H, [I/T?*], qui est ’espace vectoriel H, (4, K, K) de la théorie de I’homologie
des algébres commutatives, a une dimension finie o,, ’anneau local A4 étant
supposé noethérien.

Dénotons par S" le foncteur « r-éme produit symétrique » de la caté-
gorie des K-modules et par S leur somme directe, qui est le foncteur « algebre




WO ST T

— 241 —

symétrique ». Degré par degré, on prolonge ces foncteurs a la catégorie des
K-modules simpliciaux. Si M est un K-module simplicial, alors ’homologie
H [SM] a une structure naturelle d’algébre de Hopf a puissances divisées
et par conséquent sa série de Poincaré a la forme suivante

Thix! = (1+x) " (1—=x*)""2....

Les nombres de Betti b; sont les dimensions des espaces vectoriels H; [SM]
et les nombres positifs ou nuls e; peuvent étre calculés explicitement, soit
par voie topologique selon la méthode de Dold-Thom, soit par voie algé-
brique selon la méthode de M.-A. Nicollerat. Les nombres ¢; se calculent
a l'aide des nombres m; qui sont les dimensions des espaces vectoriels
H,; [M]. Le résultat partiel suivant est suffisant ici: d’une part e; est égal a
m; pour i < 2p et d’autre part e ,,,, est égal a la somme m,,,; + ms;.

Comme la K-algébre augmentée R est libre en chaque degré, il existe
pour tout r un isomorphisme de K-modules simpliciaux de S" (//I?) sur
I"/I"*1. Par conséquent I’homologie du K-module simplicial 7/I? (formée
des espaces vectoriels H,; (A4, K, K) connus par leurs dimensions ¢;) déter-
mine complétement I’homologie des K-modules simpliciaux I"/I"*'. Par
ailleurs ’homologie du K-module simplicial /° = R (formée des espaces
vectoriels Torj-‘(K, K) connus par leurs dimensions f§; données par les
déviations g;) peut étre filtrée par les images de 'homologie des K-modules
simpliciaux /". 11 reste donc a faire le passage de I’homologie du K-module
simplicial I"/I"*! & ’homologie du K-module simplicial /". La situation se
présente de maniére correcte (on a en fait une suite spectrale du premier
quadrant) grace au théoréme de convergence de D. Quillen. On a H,, [/"]
nul pour toute paire m < n, comme le démontre un argument de nature
purement simpliciale.

LES 2P PREMIERES DEVIATIONS

Grace au théoréme d’Eilenberg-Zilber et grace au foncteur F", noyau
de la transformation naturelle du foncteur ®" sur le foncteur S*, on peut
démontrer le résultat utile suivant. Si un épimorphisme A entre des K-
modules simpliciaux connexes donne des épimorphismes H, [}] pour
k = 0,...,n, alors il donne des épimorphismes H, [S"A] pour k = 0,..., n+1
et pour r quelconque, sauf peut-étre pour k = n+1 et r = 1, bien entendu.

On peut appliquer ce résultat a I’homomorphisme canonique de I sur
/1%,
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On va utiliser ’homomorphisme canonique de A, [/] dans H, [I/1%],
autrement dit de Tor 4 (K, K) dans H, (4, K, K), pour n différent de 0.
Les produits non-triviaux de H [/] proviennent de I'image de ’homomor-
phisme de H [I] ® H [I] dans H [I], qui passe au travers de H [I?] et les
puissances divisées de H [I] proviennent de ’image de ’application partiel-
lement définie de H [/] dans H [I], qui passe au travers de H [I”] donc de
H [I?%]. Cela étant remarqué, on peut donc définir un homomorphisme cano-
nique et utile

n,: T, (A, K, K) - H, (A, K, K)

avec I'isomorphisme de définition
T,(4, K, K) = Tor 4 (K, K)[J,

ou J, est le sous-espace vectoriel engendré par tous les produits non-triviaux
de degré n et par toutes les puissances divisées de degré n. Comme ici le
degré n est au plus égal a 2p+ 1, les puissances divisdes interviennent dans
le seul degré 2p. Par la théorie des algebres de Hopf a puissances divisées,
il est clair que I’espace vectoriel 7, (4, K, K) a la dimension g,. Par suite on
a une inégalité o, <C ¢, si n,, est un épimorphisme et une égalité 0, = ¢, si 7,
est un isomorphisme. Appelons 2, le conoyau de I’homomorphisme 7,
et w, la dimension de ..

Considérons la condition C, suivante: d’une part 5, est un isomorphisme
pour k < n—1 et d’autre part 5, est un épimorphisme. On a donc des homo-
morphismes surjectifs de H, [S"(I)] sur H, [S"(I/I?)]. Comme ils passent au
travers de H, [I"], on obtient des homomorphismes surjectifs de H, [/"] sur
H, [I'/I"" '] pour k < n+1 et pour r > 0, sauf peut-&tre pour k = n+1 et
pour r = 1. Il en découle une suite exacte pour r # 1

0—H,[I"'] - H,[I"] > H,[I"I"""] -0

et pour r = | il faut remplacer le 0 de gauche par 0 — Q, ., pour obtenir
encore une suite exacte. Grace au théoréme de convergence, on peut sommer
sur 7 et obtenir un isomorphisme non-canonique

Hn [S(I/Iz)] & Hn [R] + Qn+1 >

La dimension du H, de droite est donnée par le coefficient de x" dans la
série

(14+x)5 (1 =x2)7%2 . (1 +( =1 ixn-nntten
et la dimension du H, de gauche est donnée par le coefficient de x" dans la
série
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(1 +x)1 (1 —xH72 (L +(= 1);”‘1 x”)(‘””” on

cette fois seulement si z est au plus 2p. Mais comme 0, et g, sont €gaux pour
k < n, il reste une égalité simple J, = ¢,+ w,,,. Comme par ailleurs on
a une inégalité ¢, >> 6, due a la surjectivité de 1, cela ne se peut que sous la
forme 8, = ¢, (et i, est un isomorphisme) et w,,; = 0 (et 77,4 est un épi-
morphisme). On peut donc démontrer la condition C, par induction sur
n < 2p+1 et les nombres 6, et ¢, sont égaux pour n < 2p (ou quelconque en
caractéristique nulle).

LA 2p+ |-EME DEVIATION

Nous venons de le constater, ’homomorphisme 7, est une surjection.
Par conséquent on a une premiére inégalité, a savoir &,,,.; = 0;,11. Ce
qui a été fait ci-dessus pour n < 2p peut étre répété en partie pourn = 2p+1.
Mais alors la dimension du n-éme module d’homologie de S (//1%) est donné
par le coefficient de x*?*! dans la série modifiée suivante

(1 _l__x)él (1 ___x2p)_52p (1 +x2rt 1)52p+1+53 '
Cela conduit finalement a I’égalité simple

Ogp+1 + 03 = Ep41 + Wapys

Il en découle bien I’inégalité annoncée
O2pt1 = Eapt1 = O2p41 + 03

En particulier les homomorphismes #,,. 4 €t 1,4, sont tous deux des iso-
morphismes dans le seul cas dégénéré ol I'invariant d; est nul. Il s’agit du
cas ou ’anneau local 4, complété si nécessaire, est un anneau d’intersection
compléte, ce qui entraine par ailleurs la nullité des déviations ¢; et des inva-
riants &, pour i > 3. Il n’est pas exclu que 'on ait pourtant des égalités
Osp+1 = E2p+1 € 05,00 = &5,4,, sans isomorphisme, dans des cas non
dégénérés.

De maniére générale, considérons une K-algébre simpliciale augmentée R
d’idéal d’augmentation connexe /. On dénote par J le sous-espace produit
H [I]. H [I]de H [I], les puissances divisées n’intervenant pas car nous allons
considérer des degrés impairs. Soit K une autre copie de K, opérant sur
H [I] grace a 'homomorphisme identité et opérant sur K grace a ’homo-

morphisme de Frobenius. On peut alors construire un homomorphisme
utile n
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K ® g H, [I]/Js g H2p+1 [1]/J2p+1 .

Pour cela on considére un homomorphisme surjectif o: R — R, la K-algébre

simpliciale augmentée R étant supposée acyclique. Un élément x du quo-
tient H;/J; est représenté par un élément de H;, donc par un 3-cycle de /

ou encore par une 3-chaine de 7 notée &. La p-¢éme puissance divisée du

2-bord d¢ de IN est un 2p-cycle de Z donc un 2p-bord de I~
yP(d&) =dn.

Il s’agit 1a d’un élément du noyau de . Par conséquent n représente un
2p+1-cycle de I, donc un €lément de H,,,; ou encore un élément y du
quotient H,,,/J,,+;. Aprés les vérifications d’usage, on pose la définition
n (1®x) = y. L’homomorphisme 7 étant défini, on n’oublie pas I’homo-
morphisme 1,4

Hjpit [I]/szﬂ = Hjpiq [I/Iz]

défini lui aussi en toute généralité.

L’homomorphisme 7 est nul, lorsque le carré 7 est nul. Par conséquent
I'image de 7 est contenue dans le noyau de #,,, ; dans tous les cas. Parfois
on obtient méme une égalité. La théorie du produit symétrique montre que
c’est bien le cas, lorsque la K-algébre simpliciale augmentée R est égale a
K-algébre symétrique S(L) d’un K-module simplicial connexe L. Il s’agira
aussi d’une égalité dans le cas qui nous intéresse ici.

La K-algébre simpliciale augmentée R est a nouveau celle donnant lieu
au complexe cotangent. On sait surjectifs les homomorphismes canoniques
de H, [I]1dans H, [I/I*] pour 0 <k << 2p+1. On a donc des homomorphismes
surjectifs de H,,,,; [S" (/)] dans H,, . [S" (1/I*)] pour tout r. En utilisant
le théoréme de convergence et une induction sur » décroissant, on démontre
alors que les homomorphismes canoniques de H,,, [S” (I)] dans H,,, ([I']
sont eux aussi surjectifs. On a donc la situation suivante. L’injection cano-
nique du K-module simplicial 7 dans la K-algebre simpliciale R se prolonge

en un homomorphisme de la K-algébre simpliciale R, égale a la K-algébre

simpliciale S(7), dans la K-algébre simpliciale R, le tout donnant lieu a des
épimorphismes R
H2p+1 [Ir] - H2p+1 U"]

en particulier pour r égal a 2. Grace a cet épimorphisme, de I’égalité¢ de
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A A

image de n et du noyau de #,,.4, mentionnée precédemment, découle
I’égalité de I'image de = et du noyau de #,,, . En particulier #,,,, est un
isomorphisme si et seulement si 7 est un homomorphisme nul.

SITUATION GENERIQUE

Il faut considérer le K-module H; [/]/J;, autrement dit le K-module

quotient
Tord (K, K)/Tor{ (K, K). Tor{ (K, K) .

1l s’agit 1a du quotient H,/H,. H{ en homologie a la Koszul et un élément ¢

du quotient de Tory par Tor,. Tor, est donc représentable par un élément g

facile a expliciter a ’aide d’un systéme minimal de générateurs m,, m,,..., m,

de I'idéal maximal M de I’anneau local 4. Ce représentant g a la forme
Zppdm; Adm; 1 <li<j=<n

avec la condition usuelle de cycle pour 1 << i <{n

2u

en posant u;; €gal a 0 et u;; égal & —p;;. Cela étant, avec un anneau B, il
est naturel de considérer la B-algebre Bn engendrée par les n(n+1)/2 géné-
rateurs

x; avec 1 <<i<{m et y, avec 1 <j <k<n

et soumise aux » relations pour 1 <7 <n
2y;x; =0 I <<j<n

en posant y;; égal a 0 et y;; égal a —y;;. Mais alors ’élément gn
2y;dx; Adx; 1<i<j<n

représente un élément important tn du quotient
Tory" (B, B)/Tor5" (B, B) . Tor?" (B, B) .

L’homomorphisme utilis€é de Bn dans B est 'unique homomorphisme de
B-algebres qui envoie les générateurs x; et y;, sur 0.

Les B-algebres Bn et Zn®,B sont isomorphes. Considérons une réso-
lution simpliciale Pn (Z ) de la Zn-algébre Z. Comme le Z-module Zn est
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libre, le produit tensoriel Pn (Z) ®,B est une résolution simpliciale Pn (B)
de la Bn-algebre B. Considérons encore les produits tensoriels importants

Rn(Z) = Pn(Z) ®,,Z et Rn(B) = Pn(B) ®;, B .

Les B-algebres simpliciales Rn (Z)®, B et Rn (B) sont alors isomorphes
de maniere élémentaire.

Considérons maintenant I’homomorphisme de ’anneau Zn dans I’an-
neau 4 qui envoie les générateurs x; sur les éléments m; et les générateurs y
sur les éléments p;,. Par nature, cet homomorphisme est appelé a varier.
Au niveau des quotients de Tory par Tor,. Tor,;, ’homomorphisme corres-
pondant envoie I’élément générique #n sur I’élément quelconque ¢ donné
initialement. L’homomorphisme de Zn dans 4 donne un homomorphisme
de Rn (Z) dans R, donc un homomorphisme de Rn (K) dans R, par produit
tensoriel.

En résumé, on a la K-algébre simpliciale R qui donne lieu au complexe
cotangent de la A-algébre K, avec 'homomorphisme 7 correspondant, et
la K-algebre simpliciale Rn qui donne lieu au complexe cotangent de la
Kn-algebre K, avec ’homomorphisme nn correspondant. De plus il existe
un homomorphisme de Rn dans R placant finalement 7 au-dessus de ¢ et
nn au-dessus de n. En particulier ’homomorphisme 7 est nul en entier, si
I’homomorphisme nn est nul sur ’élément générique. Il reste a préciser quel
est ’élément nn (tn). On peut localiser Kn sans rien changer, si on le désire.
Enfin dénotons par Mn le noyau de ’homomorphisme de Kn sur K. L.’idéal
Mn a n(n+1)/2 générateurs, alors que I'idéal M a n générateurs.

CONCLUSION

Considérons une résolution libre et multiplicative Fn de la Kn-algébre K

et dénotons par Fn le produit tensoriel Fn® g, K qui permet le calcul de
Tor ¥ (K, K). Dans la définition de 'homomorphisme nn, on peut rem-

placer les K-algébres simpliciales Rn et Rn par les K-algeébres différentielles

Fn et Fn. L’élément gn appartient alors & Fn® g, Mn et représente un élé-
ment de ’espace vectoriel

Tory" (K, Mn) =~ Tory" (K, K) .
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1l faut alors considérer An, la p-éme puissance divisée de gn, qui est

’élément suivant de Fn® g, Mn, avec le degré 2p,

5 dx; Adxy, A ... /1dx,-v2p_1 Adx

Zyilig...igp_liz i2p

avec la condition 1 <X i, < i, < ... < iy,_1 < i, < n et avec la définition
classique |

yiliz...izp_.lifgp = 2 sign Gyalag T yagp_lagp
oll la permutation ¢ des 2p éléments /; est soumise aux restrictions suivantes
0y <03 < ... <Oy,_1, 01 <0p,..,05, 1 <O0gp.

Mais alors I’élément nn (fn) est nul si et seulement s’il existe une famille

d’éléments o; et f; dans Fn avec les propriétés simples suivantes. En premier
lieu, les éléments «; et f§; sont tous de degrés strictement positifs. En deu-

xi¢me lieu, les bords du; et dfi; sont tous des éléments de Fn®g, Mn. En
troisiéme lieu, I’élément An est égal a la somme des bords d («;. f;).

Lorsque I'idéal M est engendré par 2p-1 éléments, on peut utiliser Kn
avec n égal a 2p-1. Mais alors /n est nul de maniére élémentaire. Par consé-
quent 7 est nul et on obtient un isomorphisme #,,,; de maniere naturelle.

Lorsque I'idéal M a sa p-éme puissance nulle, on peut remplacer Kn
par le quotient Kn/(Mn)?. Mais alors hn modifié est nul de maniére élé-
mentaire. Par conséquent « est nul et on obtient un isomorphisme #,,,; de
maniére naturelle.

La plus petite algebre Kn qui risque d’€tre intéressante est donc celle avec
p égal a2 etnégala4d. Un long calcul démontre en fait que I’élément 7 (¢n)
n’est pas nul. Par conséquent, il existe un anneau local de caractéristique 2,
dont I’idéal maximal a 10 générateurs et pour lequel I’épimorphisme 75 n’est
pas un isomorphisme, autrement dit pour lequel &5 est strictement supérieur
a 05. A vrai dire, 1l existe des anneaux beaucoup plus petits avec cette iné-
galité, par exemple certains anneaux finis dont les idéaux maximaux ont
exactement 4 générateurs.
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