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ON THE NUMBER OF ZEROS OF FUNCTIONS

by A. J. VAN DER POORTEN

0. INTRODUCTION

The object of this note is to give a complete description of a technique
that leads to estimates for the number of zeros (always assumed to be
counted according to multiplicity) of certain classes of functions in discs
of given radius and centre in the complex plane. As we show, the technique
also suffices to prove that functions cannot be (relatively) small too often
in discs. In order that this paper may be a useful source we have made our
proofs essentially self-contained; our lemmas are often more general than
is required for the immediate applications and we have taken the opportu-
nity to mention various formulae and tricks which, though no doubt well-
known in the folklore, are by no means readily accessible in the literature.

We principally consider the case of exponential polynomials, that is,
solutions of homogeneous linear differential equations with constant
coefficients, and then briefly indicate the manner in which the method
described extends to a very much wider class of functions.

Though the results are of general interest, the principal motive for their
formulation has resided in their application in the theory of transcendental
numbers. In this context one constructs auxiliary functions and shows
that the contradiction of the result to be proved implies that, contrary
to the construction, the auxiliary function vanishes identically; see, Gelfond
[7], Chapter III, Tijdeman [28], Brownawell [2], Waldschmidt [34], Cud-
novskii [3] (see Waldschmidt [35] for a summary) for typical application
of theorem 1. The second result, theorem 2 is important in obtaining
transcendence measures as well as in recent work on algebraic independence;;
for a recent application see, for example Cijsouw [4].

The present theory would seem to have been initiated by the work
of Gelfond, see [7], p. 140ff. The work of Tijdeman [26], see also [27],
provided the major breakthrough which has simplified subsequent results.

There is also an analogous p-adic theory, see for example Shorey [25].
In fact the results are simpler in the p-adic case as can be seen in the recent
work of van der Poorten [24], see also [23].
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1. A BASIC LEMMA

One learns that the essential step in constructing an estimate for the
number of zeros of a function in a given disc consists of obtaining an upper
bound for a ratio

(1 | | Flse/ | F s,

where S* > § >0, and, if the given disc has centre z,, then |F|g

= max | F (z) |. We see that this is sufficient by virtue of the following
|z—zg]|=R

lemma, (see Waldschmidt [36], p. 166, for a slightly weaker statement).

LemMmA 1. Let S*,S, R be real numbers satisfying
S*>S8S >0 and S*>R >0.

Let F be a function holomorphic in some open set containing the disc
|z — Zol < S*. If F does not vanish identically in the disc |Z — Zy I <L S
then the number of zeros n(F, R,z,) of F in the disc|z — zy| <R
satisfies

2 (F.R.z) L S** + SR Lo [ Flse
n(F,R,z,) Log|——— 0
o 8 \s¥(s+R) = " FIs

Proof. There is no loss of generality in supposing for convenience that
zo = 0. Suppose then that F has zeros at zy, ..., z, in the disc | z| < R
and write

%2 o
S - ZZh

G(z) = F(2) HZ=1 m .

Then G is holomorphic in an open set containing the disc |z | < S*,
a simple calculation confirms that

| G s« = | Flss,
and, by the maximum-modulus principle,

| G ls < | G Is*
However
%2 i0 =
S* - Sel Zh

S* (Seio - Zh)

|G|s>|F|sHh min
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Each factor in the product on the right is the square root of an expression
of the shape

(3) (S** —2SR,S** cos \y + S?R?)/S*? (S* —2SR, cosy +R}),

where z, = R, and = 6 — ¢,. One sees that the turning points of
(3) as a function of \ occur when sin ¥ = 0 and that the minimal value
of (3) is

(4) ((S*2 +SR,)/S* (S +Ry))*

One easily confirms that (4) is minimal for 0 << R, << R when R, = R,
whence we obtain
|Gls > | F| g +SR>n
ST BAS*(S+R)/

and the assertion of the lemma follows.
. . . S*(R—z2)\" .

The lemma is “ best possible ”; the function F (z) = <m> being
the extreme case. I am indebted to Michel Waldschmidt for mentioning
the result of the lemma to me. The lemma improves upon a similar result
obtainable via Jensen’s theorem, (see, for example, Tijdeman [26], p. 3).

According to the above observations, our principal attention below is
directed towards the finding of upper bounds for ratios of the shape (1).
Although the principles of our techniques are not new, many of the details
have been little more than folklore and are presented here explicitly for
the first time.

2. A USEFUL IDENTITY

The following lemma is presented in somewhat exaggerated generality.
Its implications will become clear when below we come to look at specific
examples.

LEMMA 2. Let S*,S be real numbers satisfying S* > S >0 and
let G be a function of the shape

G(z) = er=1 by g, (2),

by, ..., b, complex constants, where g, ...g, are functions holomorphic
in some open set containing the disc l Z = Fy | < S*. Further let z, ..., z,
be points in the disc l z =~ zg [ < S andlet ty, ... t, be non-negative integers.
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Finally denote by A;; the cofactor of the typical element in the ¢ X o
determinant ‘

4 = lggtj)(zj) lléi,jéa )

suppose that A # 0, and assume the notational conventions of the intro-
duction above. Then for w such that |w — z, | S* we have

A d
(5) G(w) =) 9.1 %= 1{27: ﬁ - STQk(W)< Z) (Y)( _Z)}z 5

and it follows that if G does not vanish identically

£,

- IZA""ZODMH

A
(6) 1Glse/ |G ls<)i_y max | Y-y j’k ge(w)| . S(S

Proof. By the residue theorem the right-hand side of (5) is

Zz IZk 1 L. gk(W) G2 (z,)

g g ag A
= Zk=1 Zh=1 by gi (w) Zz=1 Qh(t’l) (z7) "
A

= > %e1 Y 5=1bn 9k (W) Oy, (84, the Kronecker delta)
=G (W) >

as was asserted. Having thus established the identity (5), we conclude that
o o Alk t '
IGIS*<ZA=1 max le 1‘—“‘gk(w) T G(Y)Wl l
and estimating the integral on the circle [y — 2z, | = S, the assertion
(6) is immediate.
We have stated the lemma in such generality as might be appropriate

for the purposes of this note. The reader should observe that, moreover,
the same idea can be used to obtain any combination

D=1 by

on the left-hand side of an identity similar to (5); this is useful in isolating
the coefficients b, which is necessary when one is investigating the number
of points in a disc at which the given function G (z) may be small; see
theorem 2 below for details. We remark that the identity (5) should be
viewed as a (degenerate) case of the integral form of the Hermite inter-
polation formula.
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3. AN ESTIMATION BY INTERPOLATION

Lemma 2 reduces the problem of estimating the number of zeros to
one of finding an upper bound for determinantal combinations of the shape
(w) )

ZH |

As we propose to discuss only some very special cases, we alert the reader
on the one hand to the encyclopaedic Muir [14], and, for some determinants
relevant in transcendence work, to van der Poorten [21].

LEMMA 3. Let wy, ..., 0, be complex numbers and denote by D; ; the
cofactor of the typical element in the o X ¢ determinant

D =" {_ij—0-

Let n be a positive integer, and write max, | a)k] < Q. Then for each
A=1,2,.,0

o D/l,k(a)kw)n~1 1 & (Qlwl)h_l(glwl)"_h h—1
Lic=1 D (n—1)! <th=1 (h—=D! (n—h)! <1—1>

Note. The quantity on the left of (7) remains well-defined by continuity
even though the w, be not distinct. However, we treat the w, as formally
distinct.

Dﬂ.,k n

Proof. We commence by asserting that » ¢, oy~ ! is the coefficient

A-1

of z*~ in the polynomial

(8) P(z) = Zk 1Oy ! Hg=1(2_wh>

r#k \ O — Wy

To see this, observe that P (z) is the unique polynomial of degree at most
o — 1 determined by the ¢ conditions (this is just Lagrange interpolation)

- (9) P(w) =o', (h=1,..,0).
On the other hand, if

D, ._
Q(z) =)5- 1(Zk 1 - o 1> z*71,
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then

D
6 - - Ak _ _
Q(w,) = Zk=1 CUZ ! (Ziﬂwﬁ ! _D_> = ZZ=1 CUZ 15kh = w, ! >

and it follows that Q (z) = P (z) as asserted.
To now evaluate the coefficients of P (z) we expand P in a Newton
interpolation series

(10) P(z) = ZZ=1 by(z—wq)...(z —wy_y),
and observe that by virtue of the residue formula we actually have

P(y) p 1 J y

1
by = — Y = 5 dy,
! 2mL(V~w1)---(v—wh) 270 Jo () —@y) ... (7 — )
h=1,..0),

where the contour C is, say, any circle about the origin of sufficiently large
radius in order that C contain the points w,, ..., w,. The second, rather
remarkable, equality is of course a consequence of the fact that the residue
formula only “ notices” P at the poles w, ..., w,, and at these points,
(8) implies (9), so P (y) coincides with y" 1,

It is convenient to evaluate the second integral at its pole (if there is
indeed such a pole) at o0. Accordingly we obtain

(11)

b _ 1 J‘ ,})n—l dy
"2mi Je (h—w)) .. (p—3)
1 dy

i L, P T —wyy) ... (1 — )

where C’ is now a circle about the origin of sufficiently small radius in
order that C’ not contain the points @, ', ..., w,~! (if some w, should
vanish treat it as formally nonzero albeit arbitrarily small). It follows
that b, is exactly the coefficient of " ™" in the power series expansion about

the origin of {(1 — @;%)...(1 — w,y) } ™', that is

n—1
(12) | by | = | cnn O 0P < ",
[u] h'—l

It is now no longer of any matter that the w, not be distinct or that any should
vanish. Inserting the estimate (12) in (10) we easily see that

h—1 —1
(13) Y (1_1) Q(Z—l) Q-
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is an upper bound for the coefficient of z*~* in the polynomial P (z) of (8).
Accordingly we have that

D}k(a)kw)h 1‘ |W| (”—'1> (h_l) o4
Li-1 (n_l)l ‘\z" Y(n—=1)! A—1

Qh A (Qlwl)n h

(/1—1)v Li= Yh=2! (n—h)!

"

which is the assertion.
The following is essentially an immediate corollary of the previous lemma.

LEMMA 4. Let g be a function analytic in a sufficiently large disc about
the origin and suppose that in that disc

Cn-1 n—1
(14) (Z) = = 1( _])'Z .

Let g,(2) = g(w,2), (k=1,..,0) and otherwise let the notation be as
in lemma 3. Then if [ g ! is the function

' Cn— 1| ”_1
(15) ‘gl(z) = n= 1( __1)’ 5

@wh h—1
0+ 121: R (h—l)' lg | )(QIW|)</1_1>

we have for each 4 =1, ...,0

(16) Zk 1'—9(ka)

Proof. By lemma 3 we have

G D K 0 Dl,k (a)kw)n_1
‘Zk=1?g(0)kw) Zk 1 11=15_'CII—1 F(;’l“‘])'

(Q\WI)” ' (QIWI)” !
Q’l 1211 1 (h'—l)' <A )Zn 1 n 1! (_1‘3’1? s

which is the assertion.

The critical aspect of the above estimates is that they are independent
of min, ., | @, — w,| = d. The interpolation method of lemma 3 is not at
all new nor is the idea of obtaining results independent of d. The latter
seems appropriately attributable to Turan [30], whilst the former occurs
in Makai [11], [12] in the context of our problem. The interpolation method
appears in a more general way in the thesis of van der Poorten [16], and
thence in the papers [17], [18] [19]. However the recognition of the general
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pattern is due to Tijdeman [26], whence see Balkema and Tijdeman [1].
For further details see the references cited in the papers mentioned
above.

4. EXPONENTIAL POLYNOMIALS

We commence by making explicit some folklore the principles of which
can be found in [16] and Tijdeman [26], and which is made explicit in
another context in van der Poorten [20].

LemmA 5. For some fixed positive integer o, and some given function

g, supposed holomorphic in the domain under consideration, denote by

J the set of functions G of the shape
G(z2) = ‘ZZ=1 by g (a2) ,

where by, ..., b,; 04, ..., a, are complex numbers. Then, for all sets of non-
negative integers p (1), ..., p (m) with sum >3-, p(h) =0 (and all

~ positive integers m such that 1 < m < o), for each function F of the shape

F(z) = Zr;:=1 Zf:(? Ay z' 1 g(t—l)(a’hz) )

the a,, complex constants, there is a sequence of functions in J converging
uniformly to F in compact sets.

Proof. The lemma depends upon noticing that functions of the shape
F are actually, in a sense, particular cases of, rather than generalisations
of functions of the shape G. Indeed, reindex so that G' appears as

(17) G(z) = ZTZ=1 Zf:(f) by 9 (wp,2) ,

and choose the coeflicients b,, as functions of w;y, ..., Wp, (my (SO Of
Oy, ..., %,;) SO that for each A =1, ..., m

(t—1D!
2mi

(18) Zf=(f) by g (w,z) = f=(f) Apt Jc g (yz) 1_[:=1 (y _whs)~1 dy ,
where the closed contour C contains all the w,, but excludes any singu-
larities of g. Clearly there exists a sequence of o-tuples (W11, ..., @y (m) )
which converges to (wy, ..., ®W{; @3, ..., ®,) componentwise, and in the
limit, (18) shows that (17) becomes F (z).

I am indebted to D. W. Masser for any felicities in the terminology used
in the lemma. |
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The following theorem is a result due to Tijdeman [26], [27]; see also
Waldschmidt [36] p. 164-174. A history of the problem can be found in
the above mentioned works.

DEFINITION. Let p (1), ..., p (m) be non-negative integers with sum
Yot =0, let a, (h=1,..,m;t=1,..,p(h) be complex numbers
which do not all vanish, and let @, ..., ®,, be distinct complex numbers.
Then a function of the shape

I 1 W,z
(19) F(2) = ) =1 PP a2z et
is called an exponential polynomial of degree o, with frequencies w, and
coefficients a,.

THEOREM 1. The number of zeros n (F, R, z,) of an exponential
polynomial F of degree o and with frequencies @y, ..., w, satisfying
max, [ wy, [ < Q, inadisc of centre z, and radius R, is less than

(yr—-DO+1)

(20) gy 14 OR 4+
s 0" — R N S PP
log 7 y(y—1)log log f(y-—l)

Jorall y >t > 1.
Proof. We consider the exponential sum
G(2) = Yie1 e, max,| o, | < Q,
z; such

and suppose that z, = 0. In lemma 2 take g, (z) = e“* and ¢}, z;

that 1, = A —1,z, = 0(A=1,...,0) and observe that the determinant
A of lemma 2 now coincides with the Vandermonde determinant D of
lemmas 3 and 4. Then from lemmas 2 and 4 we obtain

Ssk A—1 Qs*h}t
> yo_ 1( )

(21) | G ls/| Gls < ) 5= 1(5 (h— M) e’

We observe that the information (21) is independent of the coefficients
of G and independent of min,, I w, — wy |; furthermore, under a trans-
lation only the coefficients of G change, so (21) is valid for all centres z,.
So by lemma 5 we have, writing S*/S = y > 1,

(QS*)h o—h J1—1
h' A=1
GQS* <})a c—1 (QS)h o—1 (QS*)h)

'Y _I h=0 X - h=0 i

IFlS*/lFIS<eQS* Z;(l)

(22)
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It follows that, with the gain of some tidiness, but the loss of some precision,

.. 1 1
(and noticing that — log <1 ——) < ————)
| v,y =1

1
log |Fls«/| Fls < (6—1)logy + ;}———1 + Q(S*+S) .

Finally let t = (S**+SR)/S* (S+ R) > 1; then lemma 1 implies that

1 1 —1 1
(23) n(F, R,z < - {(a—l) logy + —— + @R (VL)(?_I;)}
log = y — 1 y(y —7)
as asserted.

COROLLARY 1. If ¢ =1 then n(F, R, zy) = 0. For ¢ > 1 we have

(24) n(F,R,zy,) <3(c—1) + 4QR, (Tijdeman [27]
or

(25) n(F,R,zy) <2(6—1) + 5QR, (Waldschmidt [36])
or

(26) n(F,R,zy) <4(c—1) + 3QR.

Proof. The first remark is trivial ; we require ¢ > 1 in order to assimilate
the term 1/(y — 1) in (20). To obtain (24) choose, say, T = 3.5, y = 30,
and for (25) t = 3.5, y = 10, whilst for (26) = = 3.5, y = 110. Parameters
were calculated on the HP 65 belonging to John Conway, for whom see
Knuth [9].

Notwithstanding the apparent precision of our method, (20) gives quite
inadequate results in the asymptotic cases. For example, we know from
results of Polya [15] and Dickson [6] that limg. . » (F, R)/R < Q, but
(22) does no better than limg_, , # (F, R)/R < eQ. At the opposite extreme,
“ the local valency problem ”, M. Voorhoeve has shown, using an idea
of Hayman [8], that if ¢ > 4 then R <1/8 Q implies n(F, R) <o — 1,
but nothing like this precision is available from (20); incidentally, because
F has o coefficients, it is clear that in every disc, no matter how small,
one may have n (F, R) > o — 1.

Although theorem 1 is more than adequate for applications to tran-
scendence arguments, one can do better; for example Voorhoeve [31] has

4
shown that n (F, R ,z,) <<2(c—1) + - QR by a quite different argument.
T

Actually because the result in the exponential polynomial case is independent
of centre z,, lemma 1 is quite crude (note the “ extreme case ”’) because
it assumes that the zeros accumulate at a point near the edge of the disc.
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We now turn to a generalisation of theorem 1 wherein we show that an
exponential polynomial cannot be small at too many points. This result
largely includes earlier similar results of Mahler [10], Tijdeman [29] and
Cijsouw and Tijdeman [5]. As we shall see, theorem 2 actually contains

+ theorem 1 as a special case.

We shall retain, without further explanation, the notations introduced

~ in the lemmas above. In preparation for the proof of the theorem we require
~ two lemmas.

AR D L

LEMMA 6. Let
m  p(k) b
ks

F(z) = Dk a1 g
k‘—zl s=1 (S - 1)'

be an exponential polynomial of degree at most ¢ = Y p (k).

k=1
Write
m
D, = | H (wk_wh)p(h)la Q. =lw ], d, = min | w, — Wy,
h_1 h#k
hEk
(k=1,...,m)

Denote by 0 a real number such that (S0)°~' > (6—1)! and by S a real
number we shall suitably determine below. Then

m

| bys | <2777 D ’Hl (0 + Qhy ™~ ow d PO =) | | ¢
and in particular

[ bipao | <Dt [T (0+QhY = | Fls (k=1,..m:s =1,..,pkK))
h=1

Proof. Notice (compare lemma 2) that if A 2 ks 18 the cofactor of the
typical element in the ¢ X ¢ determinant :

A—1 .
s —1 wk

(here rows are indexed by the pairs (k, s) and columns by 1) then plainly

i (i - 1)' A},,ks dC
gl{ 2ni J\l“:S 4 F(C) F} ’

2

(27) | bes | < TF 15 )

A=1

A =

ks, A

SO
(A—1)!
S/l—-l

Aks

A4
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But

5 (A —1)! it A _{ (s—1D! (h,1) = (k,s)
P T T 0  (ht) # (k,s)

so A4, /4 is exactly the coefficient of z*~! in the polynomial Py (z) of

degree at most ¢ — 1 defined by the ¢ conditions

(s—=D! (h,t) = (k,s)
0 (h,t) # (k,s)

We now make a change of scale whereby we replace z in F (z) by z6; this
is tantamount to replacing each w, by w,/0 whilst each b, become b, /0.
We arrange that (S0)° ! > (¢ —1)!. Then (27) implies that it suffices to find
an upper bound for the sum of absolute values of the coefficients of P, (z).
There is a useful stratagem whereby one obtains such a bound, dependent
on the observation that if a polynomial P (z) has non-negative real zeros
then IP(-—I)I i1s the sum of the absolute values of its coefficients. For
formal details of the required generalisation of this remark see van der
Poorten [17], lemma 2.

One confirms readily that the polynomial P, (z) is given by the integral

oNs=Lomo g N p(h)
28  Pu(x) = — | 2™ n(z “’1) 0t

271 Jcp {—z 41\ —o,

Pl(c.ts—l) (o) = {

where C, is a suitable contour about w, excluding the other w, and formally
excluding z; in fact (28) is just a special case of an integral form of the
Hermite interpolation formula.

So

— p)=1 7 a\p)=s m _yr p() 1
Pks(z>=D,:1(Z 2 (a’c‘) Iﬂ : w\ - l

(p(k)—s)! ] :}( C—wk—lj C—ZJ
Wy — Wy, : (= wyp,
whence

(29) |Pks(—1) l < Dk~1 2“_5 H (1 +Qh)p(h)—5hk dl:(p(k)_.s)
h=1

But in the estimate (29) we have estimated the numerator as if Py (z)
were a sum of polynomials with non-negative real zeros 2, ..., Q,,. Hence
(29) gives an upper bound for the sum of the absolute values of the coef-
ficients of P, (z). Recalling the scaling we are assuming, (27) implies that

m

| bis | <277 Dt [T (04+Q)P @ omedy ¢C™ [ F [

h=1
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In the special case s = p (k) we have very simply that

m z —w, p(h)-éhk
Pkp(k) (z) = H <

h=1 \Wr — Wy

and the estimate for b, follows immediately from (27) and the argument
outlined above.

LEMMA 7. Let oy, ..., a, be distinct points such that
‘F =D (o)

G| S <

and

m

= | H (O(h'—ock)T(k)la |a,| = Ry <R, min | o, — o | = o
= k+#h
k+#h

(h=1,..,n;t=1,..,7(h) where T(1),....7 (n) are positive integers with

sum Y. T (h) =
h=1
Let S*, S be real numbers satisfying S* > S >0 and S* > R > 0.
Then.
S* " /S*(S +RO\'W
F < Fl* +
Fls< < —sﬂ(s*z +5Rk) | F s
n t(h) S * +R S+R t(k)
e XhtN—l 3N—1 A;l 1—[ <( *2}1 k)( k)> 5}_1_ (zr(h)—t)
h=1 t=1 k=1 S** + SRy

Proof. By an integral form of the Hermite interpolation formula we
have

1 % — G\
21t Jig)=5 (C)H<S *(C—o )> 4

n S#2 _ iz \ T
=F(2) ] (Tﬁk> +

— 2

r=1 \S8*(z —ay)
n t(h) F(t ”(oc) - n (5*2 . C&k t(k) dC
27” hzl tZ1 -0t JC, (& =) kI=—I1 ((S *(C —Ofk)) { —z

as can be seen directly by the Cauchy residue theorem; here C, is a suitable
contour about «, excluding the other o, and formally excluding z. By the

argument detailed in lemma 2 we have for l z ] =

n 5*2 — 7 (k) n S*2 + SR (k)
(o) |20 (swrm)
k_1 S*(z —oy) k=

(S*(S +Ry)




3]

and ‘
1 n S*Z _ C& T (k) dC S*
(31) lz— FO 1 (T___k> | < | F s " -
| T Jjg| =5 =1 \S*(C—ao)) -z S* — S

We select z such that | F(z)| = | F|, whence we may suppose that z
1s not near any «,. Then by explicit evaluation similar to that in lemma 6
we obtain.

1 IR A e 4 AN 4
(32) | G T T (s

2ni JCy, k=1 \S*(C—o) {—z

n *2 (k)
<N-1 3N—1 Ah—l H (S -t Rh Rk) 5;(1(;,)_;) .

The three inequalities (30), (31) and (32) together with the integral inter-
polation formula now readily yield the lemma.

THEOREM 2. Let
m  p(k) bk
S

F(z) = > >

k=1 s=1 (§— D!

be an exponential polynomial of degree at most o = ) p(k) (>1)
k=1

s—1 Oz

with

D, = | H (Cok_wh)p(h)l> |, | = 2, < 2,
h=1
h# k

d, = min |, — w,| (k=1,..., m)
h#k

Further let oy, ..., o, be distinct points such that

n
A, = | ] (= )*® |, o] = R, <R, min |, — o | = 6.
k=1 k*h
k% h
and

FO D ()
(t—1D!
(h=1,..n;t=1,..,1(h) where t(l),..,t(n) are positive integers with
Sum i t(h) = N.

Then ;’];1

< e < < X

N>2(c—1) + 5QR
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we have
n  t(h)

b < Dt di @979 GNAR)TTHY Y g NN A8 S0 (RN

h=1t=1

U d; 009 BNJAR)TLATI(SR)Y 7,

(where A = min 4,5,"®7%.  (k=1,..,m;s=1, .., p (k)

(h, t)
In particular for k = 1,...,m
n t(h)
| Doy | < D! (N/eR)*~* Z Z A N1 4,1 8, (R (5R)"
h=1 t=1

Proof. In the proof of theorem 1 we showed at (22) that

S* QSh GIQS*}'
(33) 1F13*<lFls;_1<(v _0( ) ( )>

h! h=0 h’

whilst lemma 7 gives an inequality

" (S*(S+RY\ W
34 F F s S + E
(34) [Fls<| lsy_lkHl<S*Z+SRk>
with
n  t(h) n (S*Z—I—R R)(S+Rk) (k)
=1 gi=1 Az—l h ™k 51—(r(h)—t)
hzl tz Xht I kI_:]:l ( S*Z 1 SRk )}

Substituting (33) in (34) thus yields an inequality of the shape

(35) |Fls(1=-Y)<E

with
pe®ST /(@S T (QSMM L (SH(S +R)\T®
66 v< (v Y - Y ) T em ) s
' (y—1) n=0 N n=o h! k=1 \8*" + SR,

and we require, in order that we obtain a meaningful result, that ¥ < 1.

- Firstly we simplify (36) as in theorem 1, and obtain on writing v =

| (S*2+SR)/S* (S+ R) that

(37 —log Y>Nlog 7 — (c—1)log y — Q(S*+8) — 2 log (y/y = 1)

We conclude that (seeing that the last term is insignificant) it suffices that

- N>n (F, R,0) in order that — log Y be positive. Moreover lemma 6

~ yields an inequality of the shape

o
ki

L 38) | b | < F |5 Zys
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34
with

Ziy < 277D [ (0+Q) @ % dy 0=,
h=1

Thus (35) together with (38) gives

(39) | by | < IZ_’jSYE

which is of the shape we require. Then it remains to appropriately choose
parameters and to make simplifications so as to obtain a result in simple
shape.

For example select y = 10, T = 3,8. Then we may choose N = 2 (6—1)
+ 5QR and from (37) obtain that 1/(1—Y) < 3, (provided only that
o > 1). With this choice it suffices for the scaling of lemma 6, to choose
0 > 2(c—1)/eR at (38). By now suppressing all details (that is, replacing
all R, @, ... by R, Q, ... respectively) and estimating £ with the above
choice for the parameters we get

n  t(h)

(40) (SR)N Z Z N~y Ap Lo, W=D
h=1 t=

and

(41) Zy, < Dy 'dy ©®79(2/eR)’ ™ (2(c —1) +eQR)] !,

so certainly either
2(0—1
(42) Z, < D;td; PR~ {max (89 ( 2 )>} ,

or, more tidily, though less sharply
(43) Z,, < D;'d;*®~9)2NJeR)° ' <D 1d, °?®~s(3N/4R)* 1.
We further recall that if s = p (k) then (42) and (43) become respectively

o — 1 c—1
Zips < Di {max (49, . )} , Zipooy <Dg 1 (NJeR)© ™" .

These estimates yield the results of the theorem. .

One can of course obtain alternative estimates more suitable to a
particular application; in particular it would in practice be appropriate
to select the parameters, and thus S* and S, according to the relative sizes
of o — 1 and QR. |
We have made a point of specially mentioning the simpler bounds for
] brpy | because in typical estimations in transcendence theory one has the
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b,,, or even the b,,/(s—1)! rational integers; thus as soon as Ibkp(k) ] < 1
one has b,,qy, = 0 and then a fortiori one has sequentially by 1 = -
= b,, = 0 which eventually shows that F vanishes identically. Thus in
this circumstance it suffices to have an estimate only for the leading coef-
ficients of the polynomial coefficients.

In applications it is of course necessary to have good lower bounds for
the D, and the 4,. For some such estimates see Cijsouw and Tijdeman [5],
lemmas 5 and 6.

One case is of sufficient interest to mention specifically:

COROLLARY. If oy = 1,0, = 2,..,0, = R(son=R) and t(h)
= T(h=1,..,n), so N = RT, then
F @1 (h)
’ (t—1)!

and
N =RT>2(c—1) + 5QR,

implies that for k =1, ..., m

R T

| bepy | < D P(NJeRY ™Y Y 2 NTESRV((h—=DHR=B))T
h=1t=1

< DY (N/eR)” 1 30" 4

Proof. Note only that (h—1) ! (R—h)! > 27 R=D (R—1) | > (R/6)F;
(by sharpening lemma 7 for this case one can improve the 30 to about 15).

5. FURTHER RESULTS

We consider some further applications of the method of this note.
It is instructive to observe that the success of these applications depends,
in effect, on forcing an analogy with the simplest case, that of exponential
polynomials. The methods of Hayman [8] applies to a different class of
functions, which does however intersect with the class considered here.
For an example of this different method at work, see Voorhoeve, van der
Poorten and Tijdeman [33]. In this context see also Voorhoeve and van der
Poorten [32]; the ideas here however relate to the new method of Voor-
hoeve [31].

Continuing to use the notation of the previous sections, we observe
that if in lemma 2 we take f;, = A — 1, z; = 0 and g, (2) = g (w;z) where
g is given by (14) then the ratio 4,, ,/4 of lemma 2 is given by




A/l,k/A = D/l,k/DC/l—l .

where D is the Vandermonde determinant of lemma 3. Then lemma 4
and lemma 5 allow us to estimate the number of zeros of functions F of
the shape

(44) F(z) = ZI’?:I 2 ap 271 g (w,2)
in discs with centre the origin. Indeed, the analogue of (21) becomes

S\ A1 QSxy—4
'Fls*/lFls<Zi=1<—S‘> leam 78 D0 1(h )/1)' ]g|("*1)(QS*),

and the only important new addition is that one requires, if g (2)

cn
= > — 2" thatcoey o cq—y # 0.
n:

An easy example is given by the class of functions

(45) 9(2) = fu(2) = Qa=o 2'/(u+1) ... (u+n)
for u in C, u not a negative integer. Here it is amusing to observe that one
has
zf, (2) = u + (z—w f, (z) and hence 2 7'£,* 7V (2)
G ERACANIACY

for t = 1,2 ..., where the Apolynomials r., ¢, have degree respectively at
most #-2 and #-1 in z. It follows that, with a slight change of notation, the
function (44) can be taken to be of the shape

F(z) = ZIT=0 Ph(z)fu(whz) )

where the P, are polynomials of degrees respectively at most p (0),
p(1)—1,..,p(m) — 1 and p(0) > max, p (k), w, =0 (so fﬂ(cooz) = 1),
and we take Y oo p (h) = o + 1.

However one need not be as explicit as regards the Taylor coefficients
of the given function g. For example consider a Weierstrass elliptic function
p with given fixed algebraic invariants. Then one easily shows that there
is a point v such that

Ip(@) | <cand |[p* V@) |>07“, 1 =1,..,0

for some ¢ depending only on p. It is then easy to conclude by the method
we have described that if max,|w,| = @ <1 then a function F 3£ 0

of the shape
F(z) = ZIT=1 A, aht “Tp® Y (w,z +v)
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n

cannot have more than ¢’ o log o zeros in a disc [z ’ < ¢”, where ¢, ¢’
depend only on p. We are indebted for the above details to D. W. Masser
(for a problem involving zeros of polynomials in several variables see his

[13]).
To extend our method to a class of functions wider than that given
by (44) is practical provided only that one can usefully estimate the deter-

minants arising in lemma 2. This can certainly be done in the case

F(z) = Zh Zp(h) a, (log Z)t z*

for details see van der Poorten [22]. A similar argument should allow one
to deal with functions

Z;IT=1 bh f“h (Z) ’

where f, is given by (45); now lemma 5 allows one to consider rather sur-
prising functions. There are further, rather isolated cases where one can
deal with the determinants; for some examples, and further references see
[21].
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