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cette fois seulement si z est au plus 2p. Mais comme 0, et g, sont €gaux pour
k < n, il reste une égalité simple J, = ¢,+ w,,,. Comme par ailleurs on
a une inégalité ¢, >> 6, due a la surjectivité de 1, cela ne se peut que sous la
forme 8, = ¢, (et i, est un isomorphisme) et w,,; = 0 (et 77,4 est un épi-
morphisme). On peut donc démontrer la condition C, par induction sur
n < 2p+1 et les nombres 6, et ¢, sont égaux pour n < 2p (ou quelconque en
caractéristique nulle).

LA 2p+ |-EME DEVIATION

Nous venons de le constater, ’homomorphisme 7, est une surjection.
Par conséquent on a une premiére inégalité, a savoir &,,,.; = 0;,11. Ce
qui a été fait ci-dessus pour n < 2p peut étre répété en partie pourn = 2p+1.
Mais alors la dimension du n-éme module d’homologie de S (//1%) est donné
par le coefficient de x*?*! dans la série modifiée suivante

(1 _l__x)él (1 ___x2p)_52p (1 +x2rt 1)52p+1+53 '
Cela conduit finalement a I’égalité simple

Ogp+1 + 03 = Ep41 + Wapys

Il en découle bien I’inégalité annoncée
O2pt1 = Eapt1 = O2p41 + 03

En particulier les homomorphismes #,,. 4 €t 1,4, sont tous deux des iso-
morphismes dans le seul cas dégénéré ol I'invariant d; est nul. Il s’agit du
cas ou ’anneau local 4, complété si nécessaire, est un anneau d’intersection
compléte, ce qui entraine par ailleurs la nullité des déviations ¢; et des inva-
riants &, pour i > 3. Il n’est pas exclu que 'on ait pourtant des égalités
Osp+1 = E2p+1 € 05,00 = &5,4,, sans isomorphisme, dans des cas non
dégénérés.

De maniére générale, considérons une K-algébre simpliciale augmentée R
d’idéal d’augmentation connexe /. On dénote par J le sous-espace produit
H [I]. H [I]de H [I], les puissances divisées n’intervenant pas car nous allons
considérer des degrés impairs. Soit K une autre copie de K, opérant sur
H [I] grace a 'homomorphisme identité et opérant sur K grace a ’homo-

morphisme de Frobenius. On peut alors construire un homomorphisme
utile n
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K ® g H, [I]/Js g H2p+1 [1]/J2p+1 .

Pour cela on considére un homomorphisme surjectif o: R — R, la K-algébre

simpliciale augmentée R étant supposée acyclique. Un élément x du quo-
tient H;/J; est représenté par un élément de H;, donc par un 3-cycle de /

ou encore par une 3-chaine de 7 notée &. La p-¢éme puissance divisée du

2-bord d¢ de IN est un 2p-cycle de Z donc un 2p-bord de I~
yP(d&) =dn.

Il s’agit 1a d’un élément du noyau de . Par conséquent n représente un
2p+1-cycle de I, donc un €lément de H,,,; ou encore un élément y du
quotient H,,,/J,,+;. Aprés les vérifications d’usage, on pose la définition
n (1®x) = y. L’homomorphisme 7 étant défini, on n’oublie pas I’homo-
morphisme 1,4

Hjpit [I]/szﬂ = Hjpiq [I/Iz]

défini lui aussi en toute généralité.

L’homomorphisme 7 est nul, lorsque le carré 7 est nul. Par conséquent
I'image de 7 est contenue dans le noyau de #,,, ; dans tous les cas. Parfois
on obtient méme une égalité. La théorie du produit symétrique montre que
c’est bien le cas, lorsque la K-algébre simpliciale augmentée R est égale a
K-algébre symétrique S(L) d’un K-module simplicial connexe L. Il s’agira
aussi d’une égalité dans le cas qui nous intéresse ici.

La K-algébre simpliciale augmentée R est a nouveau celle donnant lieu
au complexe cotangent. On sait surjectifs les homomorphismes canoniques
de H, [I]1dans H, [I/I*] pour 0 <k << 2p+1. On a donc des homomorphismes
surjectifs de H,,,,; [S" (/)] dans H,, . [S" (1/I*)] pour tout r. En utilisant
le théoréme de convergence et une induction sur » décroissant, on démontre
alors que les homomorphismes canoniques de H,,, [S” (I)] dans H,,, ([I']
sont eux aussi surjectifs. On a donc la situation suivante. L’injection cano-
nique du K-module simplicial 7 dans la K-algebre simpliciale R se prolonge

en un homomorphisme de la K-algébre simpliciale R, égale a la K-algébre

simpliciale S(7), dans la K-algébre simpliciale R, le tout donnant lieu a des
épimorphismes R
H2p+1 [Ir] - H2p+1 U"]

en particulier pour r égal a 2. Grace a cet épimorphisme, de I’égalité¢ de
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image de n et du noyau de #,,.4, mentionnée precédemment, découle
I’égalité de I'image de = et du noyau de #,,, . En particulier #,,,, est un
isomorphisme si et seulement si 7 est un homomorphisme nul.

SITUATION GENERIQUE

Il faut considérer le K-module H; [/]/J;, autrement dit le K-module

quotient
Tord (K, K)/Tor{ (K, K). Tor{ (K, K) .

1l s’agit 1a du quotient H,/H,. H{ en homologie a la Koszul et un élément ¢

du quotient de Tory par Tor,. Tor, est donc représentable par un élément g

facile a expliciter a ’aide d’un systéme minimal de générateurs m,, m,,..., m,

de I'idéal maximal M de I’anneau local 4. Ce représentant g a la forme
Zppdm; Adm; 1 <li<j=<n

avec la condition usuelle de cycle pour 1 << i <{n

2u

en posant u;; €gal a 0 et u;; égal & —p;;. Cela étant, avec un anneau B, il
est naturel de considérer la B-algebre Bn engendrée par les n(n+1)/2 géné-
rateurs

x; avec 1 <<i<{m et y, avec 1 <j <k<n

et soumise aux » relations pour 1 <7 <n
2y;x; =0 I <<j<n

en posant y;; égal a 0 et y;; égal a —y;;. Mais alors ’élément gn
2y;dx; Adx; 1<i<j<n

représente un élément important tn du quotient
Tory" (B, B)/Tor5" (B, B) . Tor?" (B, B) .

L’homomorphisme utilis€é de Bn dans B est 'unique homomorphisme de
B-algebres qui envoie les générateurs x; et y;, sur 0.

Les B-algebres Bn et Zn®,B sont isomorphes. Considérons une réso-
lution simpliciale Pn (Z ) de la Zn-algébre Z. Comme le Z-module Zn est
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