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EXTENSION AND LIFTING OF ¥* WHITNEY FIELDS

by Edward BIERSTONE and Pierre MILMAN

Whitney’s Extension Theorem [10] provides a continuous linear extension
operator from the space of €™ Whitney fields (m < o0) on a closed subset X
of R”", to the space of €™ functions on R". For ¥ Whitney fields, however,
there does not in general exist a continuous linear extension operator [3].
Hence an extension problem arises: Under what conditions on X does
there exist a continuous linear extension operator from the space & (X)
of € Whitney fields on X to the space & (R") of ¥ functions ? In fact
we can formulate a more general /ifting problem (cf. [4, Section 7]): Let T
& (R") - & (X) be the canonical projection, associating to each ¥~ function
its jet of infinite order on X. If E is a topological vector space, and G: E
— & (X) a continuous linear map, then under what conditions is there a
continuous linear map G: E — & (R") such that the following diagram
commutes ?

~ ~ & (R
G -~
(1) e Tx
//
E G » £(X)

By a lifting of G at the point a € X, we will mean a continuous linear
map G,: E — & (R") such that G (&) — Ty o G, (&) is flat at a, for all £ e E.
In this paper we prove that if £ is a locally convex topological vector space,

then a lifting G of G exists provided that there exist pointwise lifts G,: E
— & (R"), uniformly in @ € X. The uniformity of the pointwise lifts is the
key ingredient in the proof, which is a simple argument using a Whitney
partition of unity, analogous to the proof of Whitney’s theorem in the #™
case (m<oo). Nevertheless the result is a useful technical lemma.
Corollary 1 extends Mather’s variant of Borel’s Lemma [4, Section 7]
to €* Whitney fields on an arbitrary closed subset X of R". Corollary 2,
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together with the well-known extension of ¥ functions defined on a half-
space [7],' [6], provides a new proof of Stein’s extension theorem for €%
functions on a domain with boundary which is Lipschitz of order 1 [8,
Chapter VI, Theorem 5]. Corollary 2 is also used by one of the authors in [1],
where Stein’s theorerh, for € Whitney fields, is extended to the case of a ‘

domain with boundary which is Lipschitz of any order, and this result is
applied to the extension of ¥ Whitney fields from a semianalytic subset X
< R" which is the closure of an open set.

Notation. Our notation is that of [9, Chapter IV]. If k£ = (k, ..., k,)
eN", x = (xy,..,x,)eR", write |k| =14k +..+k, k! =k ..k,

xt = xfl, s xff”. N" is partially ordered by the relation: k& </ if and only ‘
: . , [ l! , [ _
if k; <Il,j=1,..,n Write (k) = mlfk <, (k) = 0 otherwise. ‘

If Q is an open subset of R”, then & (Q) denotes the space of €~ functions
on 2. & (Q) is a Fréchet space; its topology is defined by the seminorms

alklf

K __

Iflm - il:]]t() axk (X) s
[ k|=m

where m e N and K < Q is compact.

Let X be a closed subset of Q. A jet of infinite order on X is a sequence of
continuous functions F = (F¥), " on X. J(X) denotes the space of such
jets. Write | F|w = sup | F*(x)|, and F(x) = F°(x), x e X.

xeK

K| =m

There is a linear map J: & (2) — J (X), associating to each fe & (Q)
okl

the jet J =
e jet J(f) ( o

J(X) - J(X), defined by D*F = (F**!),\». We also denote by D* the
[kl

X > . For each k e N", there is a linear map D*:
keN'"

This should cause no con-

map of & (Q) to itself, given by D*f =

xk
fusion since D*o J = J o DX,

Ifae X, meN, F e€J(X), then the Taylor polynomial of order m of
F at a is the polynomial

ThF(x) = Y

of degree << m. Define R,F = F — J(T;F), so that



— 131 —

RIFY(x) = F*() = ¥
Wjmek) L
if | k| < m. Note that D* o RGF(a) = (R"FY (a) =
We say that Fe J (X) is a Whitney field of class (6‘” on X 1f for each
m e N, ‘kl <m:

(REF) (y) = o(lx—y|" 1

as } X —y ] -0, x,ye X. & (X) = J(X) denotes the subspace of Whitney

fields of class ”. & (X) is a Fréchet space, with the seminorms

| (REFY ()|
FX F —T7 »
” “ ] I xyeK Ix ylm Ik]
xXFy
|| =m

where m e N and K = X is compact.

Remarks 1. 1f Fe J(Q), and for all xeR", meN, | k| <<m we have

| (RYF)*(») |
—x ‘m~ [k|

- lim

yox | Y

then there exists fe & (Q) such that F = J(f). This simple converse of
Taylor’s Theorem shows, in particular, that the two spaces we have denoted
& (Q) are equivalent. On & (Q), the topologies defined by the seminorms

-0,

| - %> | - |~ are equivalent (by the Open Mapping Theorem).
2. The norms | - |n,| - |~ are not in general equivalent. They are,

however, if the compact set K is connected by rectifiable arcs, and the
geodesic distance on K is equivalent to the Euclidean distance (e.g. if K is
convex) [9, Chapter IV, Proposition 2.6].

THEOREM. Let X be a closed subset of R", and E a topological vector
space, topologized by a family of seminorms seq- Let G E — & (X)
be a continuous linear map. Suppose that for each a e X, there is a continuous
linear map G,: E - & (R") such that

a) G, (5 (@) = G (a) for all £E€E, keN";
b) for each me N and L < R" compact, there exists . = L (m,L)e A
and a constant ¢ = c (m, L) such that for all ¢ e E,

) |G, (O |5 < c(m, L)| & som, -

Then there exists a continuous linear map G E — & R") such that G (9 l X

= G (&), EeE; ie. the diagram (1) commutes.
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To state Corollary 1, let X be a closed subset of R”, and F: & (R
— & (X) a continuous linear map. As in [4, Section 7], we say F is null at
x € R if there exists a neighbourhood U of x such that if fe & (R¥) and
supp f < U, then F (f) = 0. The support of F is the complement of the set
of points where F is null. Clearly supp F is closed.

COROLLARY 1. If F has compact support, then there is a continuous linear

map F: & (RY) > & (R") such that F(f)| X = F(f) for all feE(RY:;
i.e. the following diagram commutes :

& (R
pe X
F
& (R¥) »  &(X)

Proof. It suffices to assume X = K, a compact subset of R". Let a € K.
Mather’s variant of Borel’s Lemma [4, Section 7] provides a continuous
linear map F,: & (R*) — & (R") such that F(f) — Ty o F,(f) is flat at q,
for all fe & (RY). Let L be a cube in R* such that supp F < Int L. For each
r € N, there exists s () € N and a constant ¢ (r), such that for all g € K|

sup | F(f)* @) | <|FNIT<cO|f]sen -

[k|=r
The uniformity condition (2) for the pointwise lifts F, then follows from
Mather’s estimates in [4]. Hence Corollary 1 follows from the Theorem,
with the pointwise lifts given by the maps F,.

Remark 3. If Y is a closed subspace of R* for which there exists
a continuous linear extension operator & (Y) — & (R¥), then Corollary 1
holds more generally with & (R*) replaced by & (Y).

COROLLARY 2. Let X be a closed subset of R". Suppose that for each
ae X, there is a continuous linear map W,: & (X) - & (R") such that

a) W,(F)Y(a) = F*(a) for all Fe &(X) and keN";

b) for each meN" and L < R" compact, there exists A = A(m,L)
eN,K = K(m,L) = X compact, and a constant ¢ = c (m, L), such that
for all Fe & (X),

| Wo(F) I < | F5.
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Then there exists a continuous linear map W:& (X) — & (R") such that
W(F)| X = F foral Fe& (X).
This extension result follows immediately from the Theorem, with G

given by the identity map of & (X).

Remarks 4. Corollary 2 may be used to prove Stein’s extension theorem
[8, Chapter VI, Theorem 5] for ¢® functions. Let y = ¢ (x4, ..., x,) be a
continuous function which satisfies the Lipschitz condition

(3) [p(x) —(x) | < M|[x —x"|

for all x, x' e R". We consider extension of ¥* Whitney fields from the
closed set

X = {(,)eR™ [y =9},

Let I' be the closed half-cone defined by y => M (|x,|+...+|x,]), and
let I'(a) = a + T for any ae R""'. The Lipschitz condition (3) implies
that I' (@) < X for any ae X. Since I' is defined by linear inequalities,
Seeley’s extension theorem [7] provides a continuous linear extension
operator S’: & (I) = & (R"*1). Let p: R"*' — R be a compactly supported
. %> function which equals | in a neighborhood of 0. Define a continuous
linear operator S: & (I —» & R"™) by S(F) = S’ (p-F), Fe & (I'). The
operators W,: & (I (a)) — & (R"""), obtained by translating S to I" (a) for
each a € X, provide the pointwise extensions needed to apply Corollary 2.

5. Let &, be the ring of germs at 0 € R? of ¥” functions, and m its
maximal ideal. Let ¢p: R" — R” be a ¥ map such that ¢ (0) = 0. Then ¢
induces a ring homomorphism ¢*: & (R?) —» & (R"), defined by ¢* (f)
= fo ¢, fe & (RP). We also denote by ¢* the induced homomorphism
¢*: 6, — &, We say ¢ is finite at 0 if &,/¢p* (m) - &, is a finite dimensional
real vector space. Let by, ..., b, € & (R") represent a basis of this vector space;
we take b, = 1. By the Malgrange Preparation Theorem [9, Chapter IX,
Theorem 3.2], the germs of by, ..., b, at 0 generate &, over &,; i.e. for all
fe & (R"), there exist gy, ..., g, € & (R?) such that /= Y5_, ¢*(g,) - b; in
some neighborhood of 0. A careful study of Mather’s proof of this result
([5, Section 6] or [9, Chapter IX, Section 3]) shows, in fact, that there exist a
neighborhood U of 0 in R”, and continuous linear operators G;: & (R")
- & [RP), j =1, ..k, such that f = Z'J‘-zl (¢*oG; (f)) * b; in U, for all
fe & (RY).

Consider a €* map ¢:R" —» R" such that ¢ (0) = 0. Let X, X’ be
closed subsets of R" containing 0, such that ¢ (X’) = X. Suppose there is a
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continuous linear operator W’: & (X’) - & (R") such that g — Tx. 0 W’ (g)
is flat at 0, for all g € & (R"). If ¢ is finite at 0, then there exists a continuous
linear operator W: & (X) - & (R") such that f — Ty o W (f) is flat at O,
for all fe & (R").

To see this, choose b,e & (R") and G;: 6 R") > &R, j =1, .., k,
as above. Let W = G, 0 W o ¢*. That f— Ty o W(f) is flat at 0,
fe & (R"), follows from the fact that for all g € & (R"), the jets of G; (g) at 0,
j =1, ..., k, are uniquely determined by that of g (by [2, Proposition 5.2]).
This remark might be useful in constructing the pointwise extensions needed
to apply Cofollary 2.

Proof of the Theorem. By an easy partition of unity argument, it suffices
to assume X = K, a compact subset of R". Let { @, [ iel} be a Whitney
partition of unity on R" — K (as in [9, Chapter IV, Lemma 2.1]); 1.e. a
family of functions @; € & (R"—K) satisfying the following conditions:

i) { supp b; | iel} is a locally finite family. If N (x) is the number of
supp @; to which x belongs, then N (x) < 4".

i) &, >0foralliel X, ;P;(x) =1 foral xeR" — K.

iii) 2d (supp @;, K) > diam (supp @;) for all i e L.

iv) There exists a constant C,, depending only on k£ and n, such that
for all xe R" — K,

" 1
| D ‘pi(x)l<ck<1 +W>

Let F = G (¢) e & (K). For each i e I, choose a point a; € K such that
d (supp céi, K) = d(supp @, a;). Define f = Z; (& e & (R") by
F(x) = FO(x) xeK,
fG) = ) 9:(x) G, (H(x), x¢K.

iel
Then f = ~G (&) clearly depends linearly on &, and is ¥ on R" — K. We
must show that f'is €, D* f| K = F*, and that G is continuous. We write
f5(x) = F*(x), xeKkK,
f(x) = D"'f(x), =x¢K.

Let m € N, and L be a cube in R” such that K < Int L. There is a constant

¢, = ¢; (m, L) such that if g e & (L), [ k | << m, then
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[(REg () | < ey lglmlx —al™ 1

for all a, x e L (for example by [9, Chapter IV, (1.5.2)] and Remark 2 above).

Recall that a modulus of continuity is a continuous increasing function
o: [0, co [— [0, oo[ such that o is concave downwards and « (0) = 0. By
[9, Chapter IV, Remark 1.8] there exists a modulus of continuity « such that

(5) [(RTFY(x)| < a(lx—al)-|x —a ™ ¥

k| <m;and

o(t) = o(diam K) if > diam K,
| Flm = | Fln + a(diam K).

if a, x e K,

(6)

It follows from (5) that if @, b € K, | k | < m, then

0 | DH(TUF) (x) = DX(THF) (¥ |
< 2" 2 g (ja = bl) - (Jx —a]" ¥l 4 x —b|" )

for all x e R" [9, Chapter 1V, Remark 1.7].

Claim. There exists a constant ¢, = ¢, (m, L) such that if | k| < m,
ae K, xeL, then

(8) |f¥(x) = D" 0 G, (&) (%) |

<6y '(“f”um,L)‘*’O‘(lx_aD) x —a ",

Once the claim is established, the proof of the theorem may be completed
as follows. Let (j) be the multiindex whose j’th component is 1 and whose
other components are 0. Let k e N", ae K, x ¢ K. Then

S5 —fH @) = ¥ (x;—a) [P (a) |

j=1

<174 = Do G, (O () |
#1150 G (O — Do G(H(@ — ¥ (;—a) DD 6 G, (&) (a)] .

The second term in the right hand side is o (!x—a]) since G, (&) e & (R,
while the first is o (]x—a]) by the claim. Hence f* is continuously differ-

ofk .
entiable, and 9 = fktU)
Xj
Let u = sup d(x,K), meN, | k| < m. Applying the claim to a point

xeL

xe L and a point a € K such that d (x, K) = d(x, a), we have
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[ DX f(x) | < |D*0 G, (O (x)| + ¢, '(“f”um,l,) +o(p)) - 1l
<ef Ellamey + et (| smay +] GO )

by (8), (6). Hence there is a constant ¢; = ¢; (m, L) such that

1G (&) 15 < ¢ - (| €] smry +] GO |5 -

It follows that G is continuous.

Proof of claim. We may assume x ¢ K. Then
f() =G (O)(x) = 3, ?;(x) (G, (&) (x) = G, (&) (%)

iel

Hence

k
fE(x) =D o G, (O (x) = ), (l) Si(x),

=k

where

S;(x) = ) D'®;(x) D""'(G,, () (x) — G, (&) (x)) .

iel
If a,bek, |j| <m, write

Gy () (%) — G, (& (x) = G(&) () — (Th 0 G (&Y (x)
+(T70G, (9 (x) = G, (&Y (x) +(THo G, (&Y (x) — (T70 G, (&) (x).
Since G, () (@) = F7 (a), then
(9) | Gy (&) (%) — G, (&Y ()|

<o GO Im Ix = b "+ |G (O I |x —a|mV
+ 2m 2 g (la —b)) - (|x —a|™ Ul 4 |x — b~ 1
by (4), (7)
< (cet||E] sgmry +2" Ve o (Ja —b)) - (Ix —a|™ V4 |x —b|™~ V)
by (2).
To estimate | S, (x) |, note that if x e supp @;, then | x — a;| <3| x—a|
by iii), so that |a — a;| <4|x — a| and « (la—a;]) < 4o (|x—al). Hence
| So (x) | < 4" (3™ 1) - (ceq || €] somry +27 K12 "2 (Jx —al))

'lx _alm—lkl

by 1), ii).
Now consider | S, (%)

Si(x) = Y. D'®;(x)- D""'(G,, () (x) — Gy (&) (x))

iel

, [ #O. For all b e K,
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since ¥ ,.; D'®, (x) = 0. Choose b so that [x = b[ = d(x, K). As before,
then | x — a;| <3| x —b| <3d(x,K), | b — a;| < 4d (x,K), a(|b—a;)
< 4o (d (x, K)). By (9) and iv), there exist constants ¢’, ¢” depending only
on m, L, such that
1S, (%) | < [clllé“l(m,L) +c"o (d (x, K))] d(x, K)™~ et
< (| & xgmpy +e 2 (Ix—al)) - |x —a | Ikl

This completes the proof of the claim, and the theorem.
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