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the same time, from the inequalities mentioned above it follows that an
increase in k leads to an insignificant improvement in the accuracy of the
approximation. Hence, in a certain sense, a more economical approxima-
tion of functions is by means of expressions of the given form with k = I,
that is, by fractions of the form

P

';0 a; f; (x)

p
Z bjgj(x)
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The same inequalities with & = 1 show that there are no methods of
approximating functions by fractions of the given form essentially better
than the standard methods of approximating functions by algebraic (or
trigonometric) polynomials. '

§ 4.  Superpositions of continuous functions

Kolmogorov’s theorem on the possibility of representing continuous
functions of » variables as superpositions of continuous functions of three
variables was highly unexpected (see [7]).

In this paper Kolmogorov proves that on the n-dimensional cube 4"
we can construct continuous functions ¢; (x) (i=1, 2, ..., n+1) such that
any continuous function f(x), defined on the cube .#", can be represented in

the form
n+1

S0 = ¥ Ad).
where d; (x) is a continuous mapping of .#" onto the one-dimensional tree ')
D if the components of the level sets of the functions ¢; (x), and f; (d;)
is a continuous function on the tree D;. Since the trees { D;} can be em-
bedded homeomorphically in the plane (see [30]), the functions { f; (d; (x)) }
can be thought of as superpositions

{fi(“i(xlax29 ....,X,, s vi(xl.a xz: vees X”))}

Y Kronrod [29] has shown that the components of all possible level sets of any
continuous function defined on #n in a certain natural topology, form a tree, that is, a
one-dimensional locally connected continuum, not containing homeomorphic images
of circles. Kronrod calls this the “one-dimensional tree of the function”.
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where { f; (u;, v;) } are continuous functions of two variables, and { u; (x) }
and {v;(x)} are fixed continuous functions of n variables. Kolmogorov
derived from this the result that for n >4 any continuous function of
n variables can be represented by the following superposition of continuous
functions of not more than n — 1 variables:

le,- (11 (X1 X s Xym 1) > Ui(X 5 Xgy ety Xpmq) s X,)

Arnol’d [8], [22] showed that, firstly, in Kolmogorov’s construction [7]
we can nianage with functions { ¢; (x) } whose one-dimensional trees { D, }
have index at each branch point equal to 3, and, secondly, for any compact
set F of functions defined on such a tree D, the given tree can be so placed
in three-dimensional u, v, w-space that any continuous function f(d)
= f(u,v, w) € F can be represented as the sum of functions of the coor-
dinates, f(u,v,w) = @ (u) + ¥ (v) + k (w). Hence it follows that any
continuous function f(x, y, z) of three variables can be represented as a

9
superposition of the form f(x,y,z) = Z /i ((p,- (x, y), z), where all the
i=1
functions are continuous, and the functions { ¢; (x, y) } can be regarded as
fixed, when f(x, y, z) is taken from a compact set. Thus, Arnol’d had the
last word in refuting Hilbert’s conjecture. At the same time Kolmogorov [9]
obtained, in a certain sense, the definitive result in this direction.

Each continuous function of n variables, given on the unit cube in

n-dimensional space, is representable as a superposition of the form

2n +1

f('xlax,b '-'7xn) = Z gq( Z (pp,q (xp)) ) (1)
q=1 p=1

where all the functions are continuous, and moreover the functions
{ ¢,,(x,)} are standard and monotonic. |

In particular, each continuous function of two variables is representable
in the form

fx,p) = Z_l fila: () +B:(y) - (1D

Kolmogorov’s theorem can be supplemented by the following result of
Bari, which was obtained in connection with problems of Fourier series:
any continuous function of one variable f'(¢) can be represented in the form

F (1) =fi (o (1) + 12 (02 (1) + f3 (¢35 (1)), where all the functions {f;}

and { ¢, } are absolutely continuous [32].
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From the theorems of Kolmogorov and Bari it follows that each con-
tinuous function of n variables can be represented as a superposition of
absolutely continuous monotonic functions of one variable and the opera-
tion of addition.

A detailed account of Kolmogorov’s theorem is to be found in the
surveys [9], [33]-[36]. The proof presented by Kahane is of special interest
[36]. He does not attempt to construct the functions { ¢, , } (as the proof of
Kolmogorov does) but instead he shows by means of Baire’s theorem, that
most selections of increasing functions { ¢,, } will do. This approach also
lead to other interesting results.

Fridman [37] showed that the inner functions { ¢,, } can be chosen
from the class Lip 1. Kahane noticed that this follows directly from Kol-
mogorov’s theorem. For any finite collection of continuous and monotone
functions {f, (x) } on the segment [0, 1] there exists a homeomorphism
x = ¢ (s) of the segment [0, 1] onto itself such that the functions { g, (s)
= fi (¢ (s)) } belong to the class Lip 1. The homeomorphism is taken as

s = 1 (x) = S(X+§|f}c(X)-f}c(0)l)-

The constant ¢ is chosen to satisfy the condition ¢! (1) = 1. By means
of such homeomorphisms all inner functions in Kolmogorov’s formula can
be turned into functions satisfying the condition Lip 1.

There are some other improvements of Kolmogorov’s theorem:
Doss [38], Bassalygo [39], Lorentz [34], Sprecher [40] (see chapter 3, § 1).
There are also many results concerning special types of superpositions
(see [21], [33], [41]-[44]).

§ 5. Linear superpositions

We return again to superpositions of smooth functions.

One of the most interesting current problems on the subject of super-
positions is the following: does there exist an analytic function of two
variables that cannot be represented as a finite superposition of continuously
differentiable (smooth) functions of one variable and the operation of
addition ?

Linear superpositions arise as a result of the following argument.
Suppose that a function of two variables f(x, y) is an s-fold superposition
of certain smooth functions of one variable {f; (t) } and the operation of
addition. We vary this superposition, that is, we consider a superposition
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